CTV Design Specials

A Manuscript
Submitted to
the Department of Computer Science
and the Faculty of the
University of WisconsifLa Crosse

La Crosse, Wisconsin

by
Krista Miller

in Partial Fulfilment of the

Requirements for the Degree of

Master of Software Engineering

April, 2014

CTV Design Specials

By Krista Miller

We recommend acceptance of t his manuscript
requirements for the degree of Master of Software Engineering in Computer Sciéece.
candidate has completed the oral examination requirement of the capstone project for the degree.

Dr. Kenny Hunt Date
Examination Committee Chairperson

Dr. Thomas Gendreau Date
Examination Committee Member

Dr. Andrew Berns Date
Examination Committee Member

Abstract

Mill er, ETViDsspraSpeciRs ,, Mast er of Software Eng

Hunt, Kenny.

The CTV Design Specials team at Trane in La Crosse, WI currently relies on a
series of whiteboards and manually created spreadsheets to track the design process of
specialorder chilles. An electronic version of this system was created in order to make
data entry and reporting more efficient and robust. During the design process, the system
changed drastically and the decision was made to reengineer the entire system to improve
speedusability, flexibility, and maintenance efforts.

This manuscript describes the development of a more efficient, usable, and well
written system to replace the current one. It focuses on the design process, decisions that

were made, challenges that arcmed comparisons between the new and old systems.

Acknowledgements

| would like to thank my project advisor, Dr. Kenny Hunt, for his feedback and
guidance when it was needed. | would also like to thank all of the Computer Science
pr of es s ortle pleasuweeof Iéamidg from during my time at WW | have
genuinely enjoyed learning from all of you over the last several years.

| would also like to thank my project sponsors, Craig Ausrud and Matt Haas for
giving me the opportunity to work on thgoject. | would specifically like to thank
Craig for taking the time to help me understand the requirements well enough to use the
project for my capstone, even after we got the unfortunate news that the project would no
longer be used. | would also ¢éiko thank Matt for allowing me to work on the project
during work hours, agai n, even after we fo
was a pleasure working with you during the time of my internship and | learned more
than | could have ever imaggd. It is all being put to good use in my new role with the
company.
| would like to thank my parents for being the most amazing supporters | could have ever
asked for. Your constant encouragement and unconditional love has gotten me to where |
am today | will never be able to express how thankful and blessed | am to have the two
of you to call *“Mom” and *“ Dad”.

Finally, I would like to thank my husband, Jeremy, for encouraging me when |
needed it. Thank your for your patience during my last semestee n | wasn’ t a
spend nearly as much time with you as | should have. Your support means more than

you can imagine and I’ m not convinced that

Table of Contents

N 0] 1 = ox AT i
ACKNOWIEAGEMENTS.... ..o e et e eeeees iv
Table Of CONIENLS......uueiiie et eeeeeees v
LISt Of FIQUIES.....oieeeeeeeee s errnr s e e e e e e e e e e e e e e e e e aeeneaaeaaaaaaeaes Vil
I 0 1= o] = PPPPPRRPPPPPPPPPPPP Viii
(€1 (011 T= TV PP PP X
IO | 0T [T 14) PP PP RPUPPRRR 1
1.1 Background of CTV Design Special§he Process........ccccceeeeviiiiiiiceeciccceeennn. 1
1.2 Background of CTV Design Specialhe Software..............cccccviiiiiimeeniinnns 2
1.3 Need for REENQINEEIINGuuuiiie i i eeeei et eene e e e e e e e eee e 3
2. Software Lifecycle MOdElS...........oooiiiiiiiiiieeee e)
2 Y oo [=] KSR @0 0 153 o =] =T o H SO 5
2.2 Model Used Waterfall...........oooooiiiiiiiieeee e 5
3. Functional REQUITEMENLS............coviiiiiiiiiiimme et seer s e e e e e e e e e aeaes 8
B 1T [0] o DO PP P PP PP PP PPPPPPPPPPPPR 12
R D F 1= | oI L = PR 12
4.2 ClaSS STIUCIULR.......ceiiieieiiiitteeee ettt e enees s e et e eeeeeeaeeeeeemmeeees 14
G B =T 0o PSP PP P RSPPPPPPPPPPN 17
R Y (=T 1 B Y=o U | XY/ 17
D, IMPIEMENTALIONL.. ..o e e e e e e e e e e e aeee e e e e e e eas 19
6. Validation and TESHNGcuuiiiiiiiiiiee e 20
7. Result Oof REENGINEEIING.......ccuuiii it e e e e e et mmmr e e e e eaaaa e e eeeenen 22
S T o] [od (1] o] o TSRS 24
8.1 ChallENGES.... .ottt e e e e e e e s e e e as 24

B2 FUTUIE W OTK e 25

LS I =71 o] 10T [= o] 0 Y/ RS 27
Appendix A: GUI Before and After........ccooeeiiiie e eeeeeeeeeeee e 28
Appendix B: Internal Class StruCtULe.............cooiiiiiieree e 53

Vi

List of Figures

Figure 1: WaterfalM o d e | .o 6.......

Figure 2:Functiora | Requirement s .. .01

Figure3: Entity Relatimm s hi p Di agr amocoiiiiiiiiiiiiin L3
Figured:Class Di agram . iiiiiiieie s vmemmemmememnenen 14

Figure 5: Order Cl ass i ieaees 15,
Figure6Por ti on of Order CIl a.s.s...Na.r..r.at..i.ve 16........
Figure 7: Report Prioritize Records ScredBefore and After............c..cooeeenaee. .19

vii

List of Tables

Table 1: Test Case for Gate 3 Status Changes for Change in Shear.Date

viii

Glossay

Agile
A software development methodology that emphasizes close collaboration between the
programming team and business expertsfeequent delivery of new deployable

software.

Approval
A portion of design that must be approved before an order cae todhe next

stage/gate.

Business Layer
Part of a program that encodes the-wgaild business rules that determine how data can

be created, displayed, stored, and changed.

C#
A simple, modern, objeatriented programming developed by Microsoft. #sv

originally released in 2001.

Class Diagram
A diagram that describes the structure

relationships among objects.

CTV
Centrifugal Trane Vacuum

of

Design Special
A special option that is not offered throusandard configuration. A sales associate can
request these from a manufacturing location, which determines design costs and provides

special pricing authorization.

Entity Relationship (ER) Diagram
A data modeling technique that gives a graphical reptasion of entities and their

relationships to each other.

Graphical User Interface (GUI)
A type of user interface that allows users to interact with electronic devices with images

rather than typing commands as text.

Gray-Box Testing
A combination ofwhite and black box testing, which searches for defects due to

improper structure or usage.

Issue
A problem that occurs in the design of a chiller.

Iterative
A software development process model in which a set of activities are performed again

and againconverging toward some goal.

K001

An individual chiller for an order.

MDI

Manage Daily for Improvement

Microsoft Access
A database management system from Microsoft

Microsoft Excel
A spreadsheet application that was developed by Microsoft. longisally released in
1985.

Object-Oriented Programming
A programming model that represents concepts as objects that have data fields

(attributes) and associated procedures (methods).

Order Number
An individual chiller order.

Special
A chiller feaure that is not part of the standard chiller offering.

Xi

SQL Server

A relational database management system developed and marketed by Microsoft. Its
primary query language is Trans&®L, an implementation of the ANSI/ISO standard
Structured Query Langge (SQL).

Third Normal Form (3NF)
A type of database normalization that minimizes the duplication of data.

Unit Test
Testing a small piece of the application by isolating it from the remainder of the code to

ensure correctness before integratingithwhe rest of the system.

Visual Studio

An Integrated Development Environment from Microsoft.

Waterfall

A software development process model in which the life cycle is broken up into phases of
distinct activities. These activities are performedampletion and are not expected to

be performed again once the phase is over. A traditional process may be broken up into
the following phases: Requirements, Analysis, Design, Code, Integration, and Testing.

Windows Forms
The graphical application progreming interface included in the Microsoft .NET

Framework, providing access to native Microsoft Windows interface elements.

Xii

1. Introduction

1.1 Background of CTV Design Specials The Process

Trane, a subsidiary of Ingersoll Rand, is a global providiéreating, ventilating, and
air conditioning systems. They provide higlrformance and energy efficient systems to
buildings of anysize, from small homes to largedustrial buildings. Chillers area
productoffered by Trane and come in many differsizes and configurationsCheyare
used in air conditioning systems to cool and dehumidify air.

A Centravac (CTV) is a higbfficiency Trane chiller manufactured in La Crosse, WI.
There are many different options available, th& preconfigured units d notmeet all
customer requestsSpeci al order <chillers are chille
standard offeringslue to unique customer needghere is a specific tear€TV Design
Specials,which handles these types of orddéos Centravac chibdrs. The CTV Design
Specials team is responsible for a special order from the initial customer request to the
completion of manufacturing and installation. They track the special didergh four
stages: Pr®rder, PreSchedule Release, P@rder Sheg and Execute/Follovp. Not
all orders make it through dtur stages of development as the order may be cancelled or

it may be found that the configuration is not possible.

The first stage, P¥®rder,is the quoting stage. A chiller enters into thiease when a
customer makes a request that is not a standard offering. During this phase, the potential
order is reviewed and a quote is sent to the customer. If the customer approves the quote,

the chiller is moved to the R&chedule Release stage.

Before production can be scheduled and started, the design work must be done, which
is the bulk of the PKSchedule Release stage. Many issues can arise in this stage, for
example waiting on a third party or discovering design problems. If the design can be

completed, the chiller is moved to the fyader Shear stage.

The PreOrder Shear stage is for manufacturing preparation. The process

documentation is developed and the shear date is set. The shear date is the day in which

the first part for the chilleis cut. In order to set a shear date the manufacturing team
must be sure that all preparation is done so the factory has all of the necessary

information to produce the special order chiller.

When an order is moved to the Execute/Folldp stage, the cher has already gone
through production. This stage is simply used to document lessons learned and what
should be changeor kept the samé this type of special order is received again in the

future.

1.2 Background of CTV Design Specials The Software

The CTV Design Specialsoftwarehas been in development since June 20t 2vas
intended to assist the CTV Design Specials team in tracking special.ontensitial
launch was planned for August 2012, kite to growing requirements, loss of a
programming intern, and other projects the deadline was extended. Unfortunately, during
that extension period, the project was cancelled by company executives who decided that
Design Special teams throughout the company needed to standardize their process,
instead of each team having their own system. However, the product owner requested

that the project be finished in case they were allowed to use it in the future.

The original program has the functionality to move an order through all four stages,
refer ed to as “ Gates?”. An order can be mov
archived for later use. Gates 1 through 3 have a series of review fields consisting of a

route, comment, status, and approval.

While the review fields are common betweenheat the first three gates, they each
have unique fields and functionalities as well. For example, Gate 2 allows orders to be
prioritized. Changes in priority are tracked by the system in case they need to be
revi ewed. Gat e 2 awhil carhlold ona of Savesal different st at
values. The functionality of the review fields in Gate 2 is based off of this review status.
For exampl e, if the review status is “N/A7

are not necessary.

Gate 3 isunique in that the status of the review fields is based off of a shear date and
cannot be controlled by users. Each field has a certain number of days before the shear
date that it will turn yellow and a certain number of days until it will turn ifed is not
marked approved.

Gate 4 is different than the other thimsausaét is for feedback oly. It contains issue

fields, whichallow comments to be associated with certain steps of the design process

The transition between gatewolves various sta transitions An order in Gate 1 can
either be archived, rejected, completed. If an order is archived or rejected it is moved
into the archive and marked as being incomplete. If an order is rejected it is specifically
marked. A user can restore actaved or rejected order at any time. When an order is
completed in Gate 1, unless the user specifies differently, the order is moved directly to
archive. This is because Gate 1 is the quoting stage and many orders do not make it into
Gate 2. When a us@ishes to move an order from Gate 1 to Gate 2, they can either do it
from the archive or from Gate 2. From Ga2eand 3an order can be archived, rejected,
or completed. When an order is completed in Gate 2 it is moved directly to @ate 3
when an oder number is completed in Gate 3 it is moved to GatAdr order in Gate 4
may not be removed from Gate 4. An order in any gate can be moved to a previous gate
by an administrator. The base information of the order is deleted, but approvals, routes,

and notes are saved for when the order returns to the gate it was moved from.

The current program also has several other maintenance features that are restricted to
administrator access. These features include adding and editing users, adding and editing

gpecial or issue categories, and viewing the history of prioritizing in Gate 2.

1.3 Need for Reengineering

The original program was designed by the author and was not part of this capstone
project Thr oughout the process ,additiondirequieementgi n al
were added almost weekly. While this may not have been an issue for experienced

developers, the author still had much to learn about software design and engineering,

resulting in a disappointing final product. Following the originapr ogr am’ s ¢ o mp
additional functionalities were needed, as well as a restructuring of code and database
design. The author proposed a system overhaul to the product witinghe goals of

increasing overall speed and efficiency, creating a pesitiger experience, and
increasing future maintainability. The product owner approved the changes. Several

additional functionalities were identified:

An MDI Board must be added for Gatesl3op documentation
“lssue” fields needsihtbeMDeEBoamddded f or r e
Each time any part of an order is late, users will be forced to choose a reason
for the order being late.
Users must be able to choose an existing issue or add a new one.
Based off of the issue field, a Pareto chart must be gendcasbdw where the
most common issues lie.
1 Users must have the ability to use the daden an existing order as a template
for a new order.
Users must be able to search for a KOO1, order number, or job name.
The program must generate history reports fii0@1 or order number.

Administrators must have the ability to delete an order in any gate.

= =2 A

The program must run on a large touchscreen computer as well as s er s’
individual workstation

1 Additional chartsand reports.

The overall goal of the project wascreate a system theatuldgo above and beyond
what thewhiteboardc oul d do by making users’ jJobs ea:
neecedto create reports and transfer data from computer to whiteboard. The system
needed to have good performance anthbatainable for other interns who would be
making changes in the future.

2. Software Lifecycle Models

2.1 Models Considered

Three life cycle models were considered during the planning for this project: agile,
iterative, and waterfall. Agile was nbighly examined for the reengineering portion, but
the author recognized that it would have been a good choice for the initial design and
implementation, since requirements changed frequently. The author initially decided on

the waterfall approach, btite pr oj ect’' s advisor pointed to
changing requirements. However, shortly intodksign of theroject, it was discovered

that the program would no longer be udgdthe company The requirements became

static since thermject manager was no longer involveBue to the stable nature of the

requirements the waterfall model was ultimately chosen.

2.2 Model Used- Waterfall

The waterfall model is a linear sequence of phases, in which one phase does not
begin until the peviousphaseends. If a change is required in a later stage, that change
should be backtracked to previous phases, all the way to the initial requirements phase
[2]. Due to the nature of completing the project in distinct phases, the customer is
involvedonly in the beginning of the project, when requirements are being gathered, and

at the end during us@cceptance testing][

Requirements

Design

Implementation

\

Verification

\

Maintenance

Figure 1: Waterfall Model4]

There are several known advantages and disadvantages of using the waterfall
model. Two advantasy that werebserved throughoute course of this project are
careful and precise project planning and complete documenta}ioffiese two aspects
made the implementation stage easier and allowed for limited reworking. A disadvantage
of the model thtwas encountered is that it can take an extendedftangeto finish a
project, which is generally not acceptable in the software industry tdtjay The
reengineering of this project took approximatelge year to complete. While this

worked well fort he aut hor’'s needs, i f the final
project manager would not have approved of waiting until the end to view the product.
Another disadvantage, seen in the first attempt at the project, is that project planning is
conduckd in the early stages of the lifecycle, when only limited insight into the project is
available P]. It is easy to see that using the waterfall model in the first attempt at the

project would not have been successful.

6

The waterfall model was decided uptecause the author had a complete
understanding of the requirements to be implemented. Since the project was no longer
going to be used no additional requirements would be added, so completing the
requirements and design stages without going back fasthdanot be a problem. In the
requirements and design phases a true waterfall model was followed. Design was not
started until the requirements were complete and implementation was not ittt
design was complete. However, in the implemenmntagibasea moreiterative approach
was introduced. The database and stored procedures were designed and then a brief
testing phase was completed before code implementation was initiated. The object
classes were then created, followed by another testiagepefore any database or GUI
interactions were integrated. Thex the end, all three pieces were integrated and final
verification took place.

3. Functional Requirements

Requirements were gathered for the original system over the course of anykea
requirements were givesy the product owner, Craig, in an introductory meeting. There
were weekly meetings after that, in which Craig would add additional requirements each
time. He would also tune up any previous requirements that werre give

More useforiented requirements were gathered by attending meetings of the Design
Specials team to watch how they interacted with the current whiteboards. The author was
able to see what additional requirements were needed and hoetffi@cecould ke
designed in a way that would be the most useful for the users.

Additional requirements that were to be implemented in the reengineered program
were given in a large meeting with Craig and the owners of each of the four gates. Each
gate owner was giveregeral weeks to go through the original program and decide what
else was needed.

The system’ s requirements were detailed
complies withIEEE standarsl[1, §. The document explains the purpose and scope of
the projectdescribes user characteristics, system constraints, and assumptions, and
includes 82 functional requirementghe following list gives an overview of the
functional requirements:

1 A new K001 can be added to Gate 1 and a new order number can be added to
Gae 2
An active KOO1 or order number in any gate can be modified
A K001 or order number in any gate can be deleted by an administrator
A K001 or order number in Gates3lcan be rejected/restored or
archived/reactivated

1 An order number in any Gate can betd#arck to a previous gate without losing
any approvals or notes
A completed KOO1 will be moved to the archive, unless otherwise specified

A K001 can be associated with an active order number

= =2 4 A -4 - = =2 =4 A =

=a

= =4 4 4 -4 -

A completed order number in Gate 2 will be automatically movéskte 3

A completed order number in Gate 3 will be automatically moved to Gate 4
Approvals can be added to any active KOO1 or order number in Gates 1

An approval of an active KOO1 or order number can be modified

An approval that is not required can béetied from an active KOO1 or order
number

An approval of an active KOO1 or order number can be routed to an active user
A note can be added to an approval of an active KOO1 or order number

A note can be edited/deleted by the original creator

Specials candadded to any active order number in the MDI Board

A special of an active order number can be modified

Issues can be added to an active order number in Gate 4 or an issue of an active
order number in the MDI board

An issue can be modified or deleted

Any number of notes can be added to an issue of an active order number

A user must be able to search for a KOO1 or order number by KOO1 ID, order
number ID, description, or job name

Order numbers in Gate 2 can be prioritized by any user

Prioritizations are sadketo the database and have a reporting function available
Users can view which active items have been routed to them

Reports of various data must be available

Users can log in and out of the systend must be logged in to make changes
There must be two es roles: regular and administrator. Administrators must
provide a password to access functions requiring advanced permissions.
Administrators can add/edit/deactivate users

Administrators can add/edit/deactivate special categories and issue categories

Administrators can define which approval types are required for all gates

1 A startup screen must give a hilglvel overview of what is contained in each

gate

Figure 2belowshows two functional requirements taken from the requirements

document.

Index: 311

Name: GetGate1

Purpose: To retrieve a list of all active KOO1s from Gate 1.

Input parameters: Mone

Action: Open a database connection.
Create a list of active K001s and their associated approvals.
Close the database connection.
Retum the list of KOO1s.

Output parameters: k001s

Exceptions: The database connection failed.

Remarks: This will be used during initialization or during a refresh to create the list

of active K001s, which users can select.

Cross-references: MNone
Index: 3.2.1
Name: AddkD01
Purpose: To add a new K001 to Gate 1.
Input parameters: newk001
Action: Yalidate the data in newk001.
Open a database connection.
Store the data of newK001 in the database.
Close the database connection.
Output parameters: None
Exceptions: A K001 with the same id as newKD01 already exists in the database.
A required attribute in newk001 is missing.
An attnbute in newk001 is in an invalid format.
The database connection failed.
Remarks: newk001 should contain the attnbutes of a K001 as listed in Appendix A

Cross-references:

of this document.
None

Figure2: Functional Requirements

Each requirement has a unique index, which can be traced baclkctorgsponding
secton of the requirements documenithe name and purpose describe how the
requirement will be used and input parameters are listed. Aldughoverview of the
steps that need to be taken to complete the requiremesgeiiedand output
parameters are shown. t hat

Exceptions may

10

describecand any additional information that is helpful to understamnthe requirement
is included. Any relationships to other functional requirements are also specified.
The system also has several fionctional requirements, the most important being
usability. Since agoal of the system is foe a more advanced vesiof the whiteboards,
the team must be able to complete their tasks quickly and effictndygh quick
database accesses and frequently updated @atasystenalso needso beusablefrom
a touchscreen, as wel | memingusesmustbe ablental i vi dua
access the system concurrently, without duplicating data or encountering errors. The
system musbe secure in order to preserve data integuity confidential company
informationthrough passwords and restricted folder acckastly, the system needs to
be maintainablesinceits upkeepwill be the responsibility of interngho only remain in

the position for one or two years at a time.

11

4. Design

Since the bulk of the requirements were gathered in the ipitee of the project,
the design phase came relatively quickly. The design is based on arooigetetd
approach and included the use of a class diagram, component diagram, and entity
relationship diagram. The following section explains the tooldectthiques used

throughout thelesignphase.
4.1 Database

SinceCTV Design Speciails dataoriented, the database design naturally came first
The database was initially going to be designed in Microsoft Access 2010. This was due
t o t he awnimtbercoOnpany at the titasa Business Tools Software Intern,
whichis a position responsible for developing and maintaining small applications for
internal use. Using anything other than Microsoft Access would have caused the
company to classify therogram as a software project, rather than a tool, and give it to a
software development team overseas. However, once it was discovered that the program
was no longer needed, it was decided that SQL Server 2012 would be used, rather than
Microsoft Access This decision was made for several reasons. First, SQL Server is
more widely used in the software industry than Microsoft Access, so it would be good
experience. Second, SQL Server is a more robust choice for overall database
management. It is said handle simultaneous access better than Microsoft Access and
has better database administration tools.

One goal, when designing the entity relationship diagram, was ending with a database
in third normal form. The database for the first version of tbgptwas not in third
normal form and, therefore, contained redundant data, larger tables, and slower queries.
The new database, which is in third normal f@axeept for three tdbsused to populate
dropdown listshas increased performance and is easier to use overall. Bighuwes

the resulting entityalationship diagram.

12

ApprovalNotes
Noteld B
Approvalld

ApprovalTypeS-
tatusDays

ApprovalType
YellowDays

RedDays

GatelApprovals

Approvalid
KOO1ld

u
Type I
Status

Approved

DateApproved

Approvals

IssueNotes

Noteld
Issueld

Details

Userld

UserldBehalf

Date

Gatedlssues

Issues

o
Categoryld
DateReported

Userld

Mdilssues

Specialid

O IssueCategory

W

Issueld ¥

OrderNumberld W MainCategoryld

QOrderNumberld

lobMame

DateAdded

Category

Active

o

OrderNumberld

MdiNotes
Noteld

OrderNumberid

]

Mﬁ—‘

IssueCategory-
MainCategory

[vamows |

OrderNumberld
InQueue
InQueueDate
Started
Drawings
Cincom
Review
WorkLoad

NumDrawings

Time

m OrderNumberid

K0O1id

Description
DateQuoteSubmitted
DateQuoteRequested

DateAdded

Routes

Id
Approvalid PO

Userid

DateRouted

As shown in the entity relationship diagram, there are 28 tables, some responsible for

Rejected
Advanced
DateRejected
DateAdvanced
DateArchived

Active

&2 Gate2Approvals

Appiovalid

Gate2K001s

OrderNumberld

K0O011d

OrderNumberid

Users

Userld
FirstName

LastName

Priority
Userld

DateTime

- JobName
4 Gate3Approvals

DesignEco
lid

ShearDate

OrderNumberid

FactoryComplete

DateAdded
GateZ Rejected
OrderNumberid DateRejected
JobName DateArchived
DesignSpa Active
InDateKodiak

CustomerReqtShip
TargetGateComplete " N
et P MdiSpecials
Priority -
Specialid
ReviewStatusid
ReviewDate
DateAdded

Rejected

DateRejected ReviewStatus

DateArchived

"]

Active Status

OrderNumberid
\

IsActive

IsAdmin

OverStdLeadTime
LeadTimeEstimate
Complete

DateComplete

Active

NumProcessChanges

BO

Type
Needed

Category

Active

Userld

Complete

DateComplete

Figure3: Entity Relationship Diagram

holding data and others responsible for reducing redundancy.

In case the project is needed in the futatedatabase queries are written as stored
procedures within SQL Server. That way, if the program did need to use Microsoft
Access, there would not be a large code change required. Using stored procedures also
made for cleaner, more readable code. r@lage 115 stored procedures, each written to

retrieve only the necessary data in the quickest way possible, by delaying joins between

tables.

13

1
T Il

Workload

4 2 Class Structure

SinceCTV Design Specials a dateoriented application, thelass structure was
inferred fomthe entity relationship diagram (Figu8e The class diagram can be seen
in Figure4 below (detailed classese shown ilAppendix B)anddetailed definitions of

the 18 classes can be seen in the design docurgent [

1
1|User i
0.2
PriorityRecord Koo1 d
1.% 1.*
0.*
;>1 Route
Prioritize o —~
0 1[OrderNumberG2 (s
5.% fol
\v4 5T approval |A—[Note
1 PP KO—
——>{0rder O 1= |§..* 0.=
OrderNumberG3 > — |
> 1 I_ ApprovalGate3
IssueCategory
1
0. 1
0.*

OrderNumberG4 (\, L Issue§'> -
1

|;>

OrderNumberMdil, S lgpeqialkd:
1

0.*

SpecialCategory

Figure4: Class Diagram

As the diagram shows, the order number and K001 classes are the main parts of the
system which is fitting because they are also the central portions of the business logic
K001, OrderNumberG2, and OrderNumberG3 all inherit from Order. The various KOO1
and oder number classes also contain approvals, issues, specials, andrhet€sder

class can be seen in Figureath a portion of the class narrative in Figure 6

14

Order

#1d: string

#dateAdded: DateTime

#dateArchived: DateTime

#dateRejected: DateTime

#finalReview: Approval
#requiredApprovals: List<Approval:=
#extraApprovals: List<Approval=
#rejected: Boolean

#active: Boolean

+action: Utility.Actions

+AddApproval (newApproval :Approval)
+Modifyapproval{approvalToEdit:Approval)
+DeleteApproval (approvalToDelete: Approval)
+GetApproval{approvalld:int,approval Type:String): Approval
+Reject()

+Restore()

+Archive()

+Reactivate()

Figure 5: Order Class

Since KOOl1sand order numbers in Gates 2 and 3 inherit from tlieQolass, most of
their details can be seenFigure 5 The design document goes into further details with

class definitios for each classan example of which can be seen in Fidire

15

Class name: Order

Attributes:
protected String id
protected DateTime dateAdded
protected DateTime dateArchived
protected DateTime dateRejected
protected Approval finalReview
protected List<Approval> requiredApprovals
protected List<Approval= extraApprovals
protected Boolean rejected
protected Boolean active
protected Utility.Actions action

/** There are no public setX{) methods for any of the above attributes except for action, the rest are
protected. **/

Methods:

Name: AddApproval

Synopsis: AddApproval(newApproval)

Purpose: To add a new approval to a KOO1 or order number.
Visibility: public

Input parameters: Approval newApproval
Output parameter: None

Local variables: None

Exceptions: ApprovalExistsException — display an error message and terminate the method.
ArgumentException - display an error message and terminate the method.

Remarks: Two approvals for an order number are considered to be equal if they have the
same type.

Figure6: Portion of Order Class Narrative

Between the class diegm and class narratives, the developer is given the information

they need to implement the class. For the Order claskpederhas a unique identifier.

Since order numbers are moved from Gate 2 to Gate 3, the identifiers are repeated across

gates.Usersmustbe able to see the history of a KOO1 or order nundathe Order

class also contairattributesto track if and when they have been added, archived, or

rejected. Gates 1 through 3 all have a final review field and a list of required approvals.

The required approvals are different across gates. A KOO1 or order number can also have

any number of additional, or extra,
business logic, but is used to indicate whether the order is being adutéfied) or

deleted so the proper database updates can be made.

16

approv

A few other helpetype classes exist in the system, but are not shown in the diagram,
such as a database interfaces, a utility class, and report utility classes. The point of these
classess to keep other parts of the system from having to directly interact with the
database or reports.

4.3 Reports

Reporting is done in Microsoft Excel. This decision was made lmasthe tools
of fered by the company an ihExcél ehere theycan’ pref
manipulate it as needed. Most of the reporting is available to all users and gives
information on a KOO1 or order number. For example, users can choose a KOO1 and see
which order numbers are tied to that KO@hich gates they hagone through and
when. There is one report that is available to administrators only. It allows them to see
how users have prioritized order numbers in Gate 2. This is to protect against a single

user repeatedly prioritizing their orders above all athe

4.4 System Security

Security is nogenerallyviewed as @oncernwith these types of small programs at
Trane. They are usualbtoredon a server, where anyone with access to the server can
access themThis is becausgainingaccess to a folder ndake several days anabst
users wish to avoid thisHowever, a few extra security measures were decided upon for
this piece of software. First, the database and all needed files were placed in a folder
where only members of the Design Specials aratedlteambaveaccess. Since that
did notrestrict access enough, a password was added to the database as well as
usernames to the program. The program uses the environment username to see if that
user has access to the system. If they do, they aymatitally logged in. Otherwise,
they can view datdyut are not allowed to maley changes. There is also a log in
option, which was to be used on the touchscreen, since it was not going to have any
specific user logged in. Passwords were discussex® anyone could use the login

option to type someone el se’s username, bu

17

necessary andid notwant users to have to remember a passwAglthe design

addressedhe programhas an administrative role, whiclgreres a passwordAn

administrator can do anything that a regular user can do, but they also have maintenance
options available, which include adding, editing, or deleting users or different pieces of
data as well as viewing advanced reports. This parskiw the same for every user, but

is only given to the administrators.

18

5. Implementation

Due to the level of detail given in the design phase, the implementation phase
proceededjuickly.

Since the user interface was a portion that would be widelyed from the previous
version, that design came firstvhile nothing was directly used, the overall look and feel
was kept the same. Changes were made based on user feedback from the original
software. Figure 7 below shows a screen used to allow assate a report as seen in
the old software versus the new software. Additional comparizsmseen the new and

old GUI can be seen in Appendix A.

o CTV Design Specials - B ol Prioritize Records - B

Report Prioritize Records

Choose a username and/or starting date to filer on.

Select Date Range
Username: v 420204 @~ | to | 4202014 B~
First Mame:
M Select User (optional
Starting Date: v

Canc

Figure 7: Report Prioritize Records ScredBefore and After

The GUI was designed using Windowsrfas in Visual Studio 2013, with C# as the
code running and connecting the GUI, database, and business layers. Visual Studio and
C# were chosen for an opportunity to learn more about their features and to make
maintenance easier for future interns.

The daabase was created based on the entity relationship diagram and the classes were
written based on the class diagram and definitions contained in the design do@jment |
The largest challenge in the implementation phase was creating the charts an@seports

the programmer was unfamiliar with the technology.

19

6. Validation and Testing

Since the program is no longer being used and the programmer had since accepted a
new position in the company, the testing was left up to the programmer, which is not
ideal.

The testing did not follow the typical waterfall approach, as it was done as each
component was added to the system. Since the database and stored procedures were
completed first, each stored procedure was tested separately to ensure the expected
informaion was being retrieveand modified Methods were written in separate
database interfacing classes to access each stored procedure.

Next came the GUI, without any data connections. After the GUI was developed and
wired up, the programmer tested to eesihat each button caused the correct action and
that no data could be saved with missing or invalid entries.

After GUI development came the object classes. The classes were tested as they were
designed in the design phase. After they were all fullftevrj unit tests were created to
check the error handling and functionality of each method in each class.

Next it was time tontegrate the separate piecess different portions weradded
they were lightly tested to uncover any obvious mistakes. Afterything was put
together, graypbox testing was performed for each functional requirement. -Gray
testing is a combination of bladlox and whitebox testing, in which the requirements
are used to create test results, but the internal structure obde is also known. Any
issues that were uncovered were fixed and tested again. After all tests passed, they were
ran once more to insure nothing was broken as issues were being fixed. Table 1 shows an
example of a test case, in which changes to appstatuses in Gate 3 were checked
against changes in the shear date.

20

TestId Purpose Requirements Steps Expected Result
Open an active Gate 3 ordd Order number data is loaded t

number form
Unapprove all required | Required approvals should ng
approvals be marked as approved
Change the shear date to th All required approvals should|
current date have ared status

Change the shear date to o

No change in approval statug
day past the current date 9 P

1. The steps and expected result
assume the following about the
required approval types:

Change the shear date to tW Programs status should chang
days past the current date| to yellow, no other changes

Process Design: 13 days to yellow| Change the shear date to fo| Programs status should chang

To ensure the status datd to red days past the current date| to white, no other changes
for approvals change ag Shop Documentation status
G300
they should when the | Material: 12 days to yellow, 10to r¢g dChange the shear date to s should change to yellow, no
. days past the current date
shear date is changed other changes
Shop Documentation: 7 Days to| Change the shear date to § Shop Documentatl.on status
should change to white, no oth
yellow, 5to red days past the current date
changes
. Change the shear date to 1| Material status should change
Programs: 3 days to yellow, 1 to rgd
days past the current date yellow, no other changes
Change the shear date to 1 Process Design status shoul
change to yellow, no other
days past the current date
changes
Change the shear date to 1) Material status should change
days past the current date white, no other changes
Change the shear date to 1 Process DeS|gr_1 status shoul
change to white no other
days past the current date
changes
Table 1: Test Case for Gate 3 Status Changes for Change in Shear Date
The table above does not show the | ast t

”

“Pass/ Fai l
If the program were to be used, usability and user acceptance testing would have also
been performed by the product owner and owners of the four gates. For about-a month
long period, after each of their meetings, they would have used the program to enter the
same data Ht they entered on the current whiteboards to make sure everything was up to
their standards and would be easy for everybody to use. However, since that was not an
option, the programmer did their best to navigate the system with the mindset of a user

andmake any changes that would benefit usability.

21

7. Result of Reengineering

The reengineering of the system was a success. The system has a better overall
structure, with increased usability, performance, and ease of maintenance. While none of
the co@ was reused, the overall system structure, database structure, and GUI design
were reused and improved.

The old version of the software contained seven classes, only four of which were used
to store data objects, which meant that a lot of the code thaldshave been in a
business layer was instead integrated with GUI, making code hard to read and make
changedlifficult to make. The reengineered software contains 12 database interface
classes, 1 utility class, 4 various reporting utility classes, amdjgét model classes
(Appendix B), none of which access any of the GUI code. These classes are more
readable and flexibJenaking the system easierunderstand.

The reengineering of the database and its access methodeealsatirastic
improvement.The old database contained 12 poorly structured tabisgead of having
separate tables for approvals, routes, and order numbers, these were all attributes in larger
tables,meaning that an order number could have a finite number of approvals, all note
were stored in one field, and only one route was allowed per approval. The new database
contains 29 tables with no duplicated data. These tables allow an order number or KOO1
to have any number of approvals, an approval to have any number of notestasd
and so on. The database queries were moved from the code to the database, as stored
procedures, and were optimized to increase speed and only retrieve the necessary data.
These changes gave the system a large performance boost.

The GUI was heawl based of off the old one. The largest changes were made to the
content on each screen. Instead of fitting everything needed for a KOO1 or order number
on one screen, they are split into separate screens to help the user see what exactly is
needed forhe task they are trying to accomplish. Comparisons between the new and old

GUI can be seen in Appendix A.

22

The reengineering was an overall success. The good parts of the old system were
reused and improved upon and the poorly designed portions were rfedlomproved

performanceusability, and codeeadability.

23

8. Conclusion

The creation of this system was a great learning experience. The author was able to
experience the challenges and benefits of closely following a software lifecycle model,
while also feehg the disappointment of a project being discontinued. While having the
patience to complete all documentation before starting implementation, as dictated by the
waterfall model, was a challenge, it was a great benefit in the end, making the
implementation portion go smoothly.

The original goals of the project would have been met with this system, had it been
used. The system would allow users to do everything they were previously able to do,
and more. They would have all of their data ineoptace and could easily view current
data as well as looking at past data. All of their reports would have been in once place
and they could have accessed everything from the comfort of their own desk.

8.1 Challenges

Multiple challenges were overcomethe process of this system design. The largest
of those challenges came when the project owner was told that he was no longer to use
the system. Since the author had not gathered enough understanding of some of the new
requirements, the project managead to be kept involved long enough to gather
sufficient information.

A smaller challenge was changing requirements, which still occurred, even after the
project owner was out of the picture. This was the fault of the author, for not looking
back in old tes prior to starting the project. This made it necessary to backtrack
through all stages of the waterfall model to accommodate for the rediscovered
requirements.

A challenge also arose when it was time to start allowing order numbers and KOO1s to
be adeéd and edited. Several different screens can be opened, while editing either an
order number or a KOO1. For example, if the user wants to add a new approval, they
open a form to enter the information of a new approval, from which they can also open

additonal forms to add notes or routes. At first the programmer made temporary records

24

for approvals, notes, and routes when this was done so the data could be saved and passed
backor deleted, if necessaryHowever, that caused a very slight pause whemnglos
eachform while the information was being saved to the database. When looking for a
solution, the programmer found that data could be passed between forms through public
methods, so if a change was made that data could be retrieved and marked as being
added, modified, or deleted so that all of the data could be saved at once, at the end of the
edit.

A databaseelated challenge tharosewas related to having multiple users accessing
the system at the same time. One major goal of this system whkmsmaisers to be able
to make changes from their desks instead of having to walk, or in some cases travel from
different buildings, to get to the main board. This brought the possibility of users not
seeing ugo-date data or creating duplicate informatia the system. This issue was
solved by making sure data was refreshed after each major action (saving or closing a
form), which guaranteed that the user was seeing the mastdgie information. To
protect against duplicate information being addidabase constraints were used to
avoid having duplicate order numbers, the same approval for an order number, etc. A
message is shown saying that the information had already been added and they will not
be allowed to add it again.

A positive challenge wsalearning to interface with Excel through C# to create charts
and reports. The same can be said for the charts shown in the interface of the program.
The programmer did not haamyexperience with charts or reports, so there was a
learning curve involgd. The skills and techniques discovered will be useful in future

projects.
8.2 Future Work

It is not likely that any future work will take place, since this program will not likely
be needed in the future. However, the idea of it may be usedintheaut s cur r ent
position at Trane because a Manage Daily for Improvement (MDI) Board is being

25

considered. Th€TV Design Speciakystem could be used as a framework and the MDI

Board portion could be abstracted out and used as a generic MDI Board template.

26

9. Bibliography

[1] IEEE Guide to Software Requirement Specifications, New York, IEEE 1998.
ANSI/IEEE Std. 8361998.

[2] L. A. Maci aszek and B. L. Li ong, “Lif
Engineering: A Case Study Approach. Harlow, England:deeaEducation Limited,
2005, ch 1, sec. 1.3.1, pp.-22.

[3] Mill er, Krista. “Design Document for
2014.
[4] J. Rossberg and M. Ol ausson, “Devel opm

Application Lifecycle Managment with Visual Studio 2012, 2nd ed. Dordrecht:
Springer, 2012, ch. 3, pp. 38.

[5] Schul t z, Krista. “Software Requirement
2013.

27

Appendix A: GUI Before and After

G CTV Design Specials - 1.0

For support contact Craig Ausrnud or Krista Schultz

‘Gate 1 (Pre-Order)

| Miscellaneous Miscellaneous

Gate 2 (Pre-Schedule Release)

| Job MName Supply Chain Product ENGR MFG ENGR Operations

Shop Documen...

Gate 2 Complete

Gate 3 (Pre-Order Shear)

| Job Name Order Mo
Gate 4 (Execute/Follow-Up)
| Job Name Order Mo Feedback

Entry Screen (Before)

28

o Welcome to CTV Design Specials = B

CTV Design Specials

For support contact Craig Ausrud or Krista Miller

Gate 1: Pre-Order

Red Incomplete Approvals 12 View Gate 1

Routes 4

Yellow
Active 3

Green
None Completed 5
_ | | | Rejected 2

0 2

Gate 2: Pre-Schedule Release

Red Incomplete Approvals 13 View Gate 2
2
Routes 2
Yellow i
Active 3
creen [
C leted 2
None emp
| | | | | Rejected 1

0 2 4 6 8 10 12 14

Gate 3: Pre-Order Shear

Incomplete Approvals 4 View Gate 3
Red
Routes
Yellow
Active 1
Green
None Completed 1
| | | Rejected 0
0 1 2 3
Issues 2
Gate 4: Execute/Follow-Up View Gate 4
Active 1

Entry Screen (Akr)

29

Main Screen (Before)

a1noy anoy ajnoy anoy 3IN0Y ¥YONI
snoaue||ads] S310N [BIUEU] eloueul S2]0N 42 12 N H¥ONT 1Npold
1] SNO3UB||SISIN == S 4 |EldUBUIg [= SRR 300 s HON3 B4 HON3 54 Pnpoid 2
¥31en | £31en| z81ED| Tajen

w pabbo| Apuauno Jon

sjedads ubiseg ALD

30

viL0z/8E/E

¥10Z/0E/E

v10E/62/t

100X 3533 M3N

£0-vloZ

rloz/e/e

vlLoz/8E/E

vlLog/se/z

paupa - 71531

L0-¥L0E

P2ppY 81ed

pajsanbay ajent a1eg

papiqns ajony a1eg

uondunsag

PI LOOXA

Main Screen (After)

1L 305

_vﬂmo_Emom _o_}__ mﬂmo_ mﬂmi | e

0 :paIN0I SLUSY £

3| EISL um:_nommﬂ_

L diBH s S50l < M - 3y

s|erads ubisaq pLD

He

31

G

Gate 1 - New

1

Sun
30
]
13
27
4

£

7
14
21
28

April 2014
Mon Tue Wed Thu
1 2 3
8 9 10
15 16 17
2 23 24
29 30 1
6 7 8

5

Fri
4
1
18
25
2
9

[Today: 4/20/2014

3

Sat

5
12
19
26

3
10

KNO [| View k001 Form
K NO Description
Date Quote Submitted | 4/20/2014 B-|
Date Quote Requested | 4/20/2014 [k |
Routed To Notes
osween |
P
ove I
e T —
T E—
I —
Addiional Review l:l

Approval Status Approved?

L
[
L]

[~

EfEEEEE
O IEEEE

_—]

Yellow - Questions or

O
[] O
[] O
[] O
[] O
[] O
[|

Gate 1 Add/Edit (Before)

32

View K001 Form

Date Quote Submitted
Date Quote Requested

ﬂm | Add Approval | | View Approval Criteria

ApprovalType Approved DateApproved
Product Engineer

Manufacturing Engineer

Financial

Final Review

Gate 1 Add/Edit (After)

33

G Gate 2 - New - olEl

Job Name || ‘

Yellow - Exceeds target complete

Order Number | ‘ View K001 Form
KNO | v‘ |MdKNO|
4 April 2014 L4
Special Notes Sun Mon Tue Wed Thu Fri Sat
3031 1 2 3 4 5
6 7 8 8 W M 12
) 13014 15 16 17 18 19
Design SPA | | [20] 21 22 23 24 25 2%
27 28 29 30 1 2 3
In Date Kodiak [42002014 B 4 5 5 7 8 9 1
Customer Reqt Ship Date | 4/20/2014 - [Today: 4/20/2014
Target Gate Complete | 4/20/2014 [‘
Priority Priority # o
r Review Approvals
Review Status []| 4z0pma
Routed To Add Notes Review Approved?

Supply Chain O
Product ENGR
MFG ENGR |:|
Cperations l:l

Shop Documentation l:l

]

OO

LRy
Ooogo

o

ate 2 Co

3
°
o
il

Additional Review

L]
[
L]

Gate 2 Add/Edit (Before)

34

Dedign 5P N
Kodiak In Date
Customer Reqt Ship Date
Target Gate Complete
Priority 3

REII'iEIV | Add Approval || View Approval Criteria |

Review Status Review Date 4202014 - Days Until Review:

Date
Approved

$
:

Approval Type Latest Note

Supply Chain
Product Engineer

Manufacturing Engi...

Operations

Shop Decumentation

Ojggjogit

Final Review

Gate 2 Add/Edit (After)

35

@ Gate 3 - Edit = =

Job Name
| | 1 April 2014 v Ve 94‘

Order Number | V‘ Sun Meon Tue Wed Thu Fri Sat
ELVEY 1 2 3 4 5
6 7 2 9 1w 112
13 14 15 16 17 18 19
Special Notes 21 2 B M 5 %
27 28 29 30 1 2 3

4 5 6 7 8 % 10

Design ECO [41202014 @~ | [Today: 4/20/2014
Shear Date [42002014 @~ |
Factory Complete Date | 4/20/2014 -
Routed To Latest Notes Approval Status Approved? Approval Date

Process Design l:l |i| D |i| O label12

Material l:l O label21
Shop Documentation |:| O label22
u label23

LR]
H§fDEE
LR]

Additional Review

Gate 3 Edit (Before)

36

Wiew in MO Board

Design ECO 423720014 [~

Complete and move to gate 3 - test Factory Complete | 4/24/2014 [E~
4212014 B~

| Add Approval || View Approval Criteria |

Date

roval T Latest Note
App ype Approved

z
i

Process Design Test note - Krista - 4/8/2014
Material

478/2014

Shop Documentation

Programs

ooigios

Final Review

Actions

[] Archive L] Reject

Gate 3 Edit (After)

37

G Gate 4 = B

Order Number | v| Add Feedback
Job Name | v|

Date Added

Special Motes

MTfg Engr | Operations | Order Services | Financial|

BOM Corrections

Process Revisions

Documentation Issues

Other Issues

Gate 4 Edit (Before)

38

General

Order Number 23523A Date Added 4/13/2014

Job Name New Gate 2 Test

Add lssue Feedback
Manufacture Engr | Operations | Order Services | Financial | Other |

Date Reported
Reported By

Documentation 4/13/2014 Krista Miller |

Category

Gate 4 Edit (After)

39

Add Note

Details Author

Add Route

Date Routed Routed To

User

Date Routed 4/20/2014

Route (After— Previously on same screen as GagAdd/Edit)

40

9/3/13

Krista Miller

Add Note

Author

Issue (After— Previously on same screen as Gate 4 Edit)

41

=] Gate 1 - Notes - O

L]
Product ENGR: Noted By: | v
|
MFG EMGR: Moted By: hd
Other. Noted By: | v
Financial: Noted By: | v
Miscellaneous Nated By: W
Miscellaneous Noted By: | v
| (¥

Notes (Before)

42

Krista Miller

4/20/2014

Notes (After)

43

F Prioritize "

Order No Priority

<>

Prioritize (Before)

44

o frmPrioritize - O

Prioritize

Use the up and down arrows to prioritize

Priority Order Number
> 1 test

2 MewTest

3 test2

coce

Prioritize (After)

45

Maintenance (Before)

Actions

| Add Special Category Edit Special Category

| Add lssue Category Edit Issue Category

| Edit User |
| Delete Order Number |

| Delete K001

|
|
| Add User |
|
|

| Move to Previous Gate

Reports

| Prioritize Records |

Maintenance (After)

46

a2 CTV Design Specials - &

Username: | v|
First Mame: | v|
Starting Date: | v|

Compare Cancel

Create Priority Report (Before)

oS Prioritize Records - O

Report Prioritize Records

Select Date Range
4202014 @ | to | 4202014 B~ |

Select User (optional)

Submit Cancel

Create Priority Report (After)

a7

User ID |

First Name |

LastName |

[] Administrator

Active

Add User (Before)

User Id |

First Name |

Last Name |

[] Administrator

Add User (After)

48

User D

First Mame

Last Mame

[] Administrator

Active

Edit User (Before)

User Id

First Name

Last Name

|
|
|
[] Administrator [] Active

Edit User (After)

49

Routing Information

Gate 1 (Pre-Order)

, Product Gate
KNO's ENGR MFG ENGR Other Financial Misc. Misc.

Complete

Gate 2 (Pre-Schedule Release)

. Product : Gate
Order No Supply Chain ENGR MFG ENGR Operations Shop Doc B

Gate 3 (Pre-Order Shear)
| Order Mo Process Design Material Shop Doc

Program Gate Complete

View Routes (Before)

50

Gate 1: Pre-Order
Koo ApprovalType Latest Note Approved DateApproved
3 2014-03 |Fina| Review Final review green - Krista - 3/28... | O |

Gate 2: Pre-Schedule Release

Order Number ApprovalType Latest Note Approved DateApproved
test? Final Review O

Final Review O

Gate 3: Pre-Order Shear
Order Number ApprovalType Latest Note Approved DateApproved
ToG3 Material [
ToG3 Shop Documentation O

View Routes (Afer)

51

Username |

Login (Before)

Login (After)

52

Appendix B: Internal Class Structure

All classes have an implied constructor that takes initial inputs, set methods for private

variables, andiet methods for all variables.

Order

#1id: String

#dateAdded: DateTime

#dateArchived: DateTime

#dateRejected: DateTime

#finalReview: Approval
#requiredApprovals: List<Approval=
#extraApprovals: List<Approval=
#rejected: Boolean

#active: Boolean

+action: Utility.Actions

+AddApproval {newApproval :Approval)
+ModifyApproval{approval ToEdit: Approval)
+DeleteApproval{approvalToDelete: Approval)
+GetApproval{approvalld:int,approval Type:String): Approval
+Reject()

+Restore()

+Archive()

+Reactivate()

K001

+description: String
+dateQuoteSubmitted: DateTime
+dateQuoteRequested: DateTime
-dateadvanced: DateTime
-advanced: Boolean

+CommitChanges (activeUser:User) : bool
+GetKealForml()

+AdvanceToGate2()

+Archive()

+Reactivate()

OrderNumberG?2

+jobName: String

+designSpa: String

-kBB1s: List<Koal=

+1inDatekKodiak: Date

+customerReqtShip: Date

+targetGateComplete: DateTime

+reviewDate: DateTime

+priority: Integer

+reviewStatus: Utility.ReviewStatuses
+CommitChanges (activeUser:User): bool

+AddKe01 (newk0o1 :Kea1)

+AddKee1AndCommit (kee1Id:String)
+DeleteKedl({kanlToDelete :KBO1)

+UpdateApprovals (prevStatus :Ut1lity.ReviewStatuses)
+CompleteApprovals ()

+SetReviewStatus (newStatus :Uti1lity .ReviewStatuses)

OrderNumberG3

+jobName: String

+designEco: String

+factoryComplete: Date

-shearDate: Date

-requiredApprovals: List-<ApprovalGate3=

+CommitChanges (activeUser:User) : bool
+GetApproval{approvalId:int,approval Type:string): Approval
+ModifyApprovallapprovalToEdit: Approval)
+UpdateApprovalStatuses ()

+setShearDate(shearDate :DateTime)

OrderNumberG4

-1d: String

-jobName: String

-issues: List<Issuex

-dateAdded: Date

+action: Utility.Actions
+AddIssue(newIssue:Issue)
+ModifyIssuelissueToEdit:Issue)
+DeleteIssue(1ssueToDelete:Issue)
+CommitChanges (activeUser:User)

OrderNumberMdi

-1d: String

-jobName: String

-notes: List=Notex

+1nQueue: Boolean

+1nQueueDate: DateTime

+started: Boolean

+drawings: Boolean

+cincom: Boolean

+review: Boolean

+workload: Utility.workloads
+numDrawings: Integer

+numP rocessChanges : Integer
+designBuildTime: Time
+overStdLeadTime: Time
+leadTimeEstimate: Time

-specials: List<Special=

+active: Boolean

+action: Utility.Actions
+CommitChanges (activelUser:User) : bool
+addNote (newlote :Note)

+ModifyNote (noteToEdit:Note ,user:User)
+DeleteNote (noteToDelete:Note,user:User)
+AddSpecial (special:Special)
+ModifySpecial(Special:special ToEdit)

54

Approval

-1d: Integer

+type: String

-routes: List<Route=

-notes: List<Note=

+status: Utility.Statuses
-approved: Boolean
-dateApproved: DateTime
+action: Utility.Actions
+AddRoute{newRoute :Route)
+ModifyRoute(routeToEdit :Route)
+DeleteRoute(routeToDel ete :Route)
+AddNote (newNote :Note)
+ModifyNote (noteToEdit:Note)
+DeleteNote{noteToDelete :Note)
+Clear()

Approval Gate3

-yellowDays : Integer
-redDays : Integer
+SetProperStatus (shearDate:DateTime) : Boolean

Route

-user: User

-dateRouted: Date

+action: Utility.Actions
+AddToDatabase (approvalId:int)
+Delete(approvalld:int)

Note

-1d: Integer

-details: String

-user: User

-onBehalfof: user

-date: DateTime
+action: Utility.Actions

+Edi1tDetails{newDetails:String,user:User)

+AddToDatabase (1dForAssociation:String, type:Utility.NoteTypes)
+CommitChanges (userId:String)

+Delete(userId:String)

55

Special

-1d: 1nt

+category: SpecialCategory
+needed: Boolean
-complete: Boolean

+user: User

-1s5ues: List<Issues
-dateComplete: Date
+action: Utility.Action

+Complete()

+Uncomplete()

+addIssuel(newIssue :Issue)
+ModifyIssuel1ssueToEdit:Issue)
+Deletelssue(issueToDelete: Issue)
+GetIssueCount(): int
+AddToDatabase (orderNo:String)
+CommitChanges (activeUser:User)
+Deletel()

SpecialCategory
-1d: int

+name: String
+active: Boolean

+AddToDatabase()
+ModifyInDatabase()

Issue

-id: Integer

+category: IssueCategory
-notes: List<Notex
-dateReported: Date
-user: User

+action: Utility.Actions

+AddNote (newNote :Note)
+ModifyNote (noteToEdit: Note)
+DeleteNote (noteToDelete :Note)

56

IssueCategory

+name: String

+active: Boolean

-mainCategory: Utility.IssueCategoryCategories
+AddToDatabase ()

+ModifyInDatabase()

Prioritize
-priorityRecords: SortedList<int, PriorityRecord=
-dateTimeofPrioritize: DateTime
+AddRecord (newRecord:PriorityRecord)
+0rderfumbe rexists (orderfumber:String): bool
+ChangePriority(orderNum:string,newPriority:int)
-GetOrderNunRecord(orderNum:String): PriorityRecord
+CommitToDatabase(): bool

PriorityRecord

-orderNumId: String
-priority: Integer
-user: User
-dateAndTime: DateTime

+SetPriority(newPriority:int)

User

-userId: String
+firstName: String
+lastName: String
+active: Boolean
+admin: Boolean

+AddToDatabase()
+ModifyInDatabase()

57

