
An Equipment Sales Cost Calculation System

A Manuscript

Submitted to

the Department of Computer Science

and the Faculty of the

University of Wisconsin-La Crosse

La Crosse, Wisconsin

by

Craig K. Lenz

in Partial Fulfillment of the

Requirements for the Degree of

Master of Software Engineering

May, 2012

An Equipment Sales Cost Calculation System

By Craig K. Lenz

We recommend acceptance of this manuscript in partial fulfillment of this

candidateôs requirements for the degree of Master of Software Engineering in

Computer Science. The candidate has completed the oral examination

requirement of the capstone project for the degree.

____________________________________ _______________________

Dr. Martin Allen Date

Examination Committee Chairperson

____________________________________ _______________________

Dr. Thomas Gendreau Date

Examination Committee Member

____________________________________ _______________________

Dr. Kasi Periyasamy Date

Examination Committee Member

iii

Abstract

Lenz, Craig, K., ñAn Equipment Sales Cost Calculation Systemò, Master of

Software Engineering, May 2012, Allen, Martin.

The availability and quality of product costs prior to manufacturing within the

Trane Commercial Systems business of Ingersoll Rand has always been

inadequate and poor. Of course, not having accurate costs means that the gross

margin cannot be accurately calculated. Gross margin is needed as a component

of discounting decisions and also as a leading indicator of future profitability.

The focus of this project was to create a system to solve that problem.

This manuscript describes the development of a complete cost calculation

system designed to deliver accurate costs and margin prior to, during, and after

the sale of Trane products. It also describes the software engineering principles,

learned in the Master of Software Engineering courses at UW-L, that were used

throughout the development cycle. Those principles were used to successfully

achieve the projectôs goals.

iv

Acknowledgements

I want to express my sincere thanks to several people who have helped me with

this project over the last year. First I want to thank Dr. Martin Allen for his time

and guidance on this project. Dr. Allen met with me weekly during his busy

schedule and really helped keep me on track in order to meet my goal of

completing the project in one year. Dr. Kasi Periyasamy has been such a wise

and helpful professor. I believe he taught 6 out of the 8 classes that I took for the

graduate degree, and they were all very interesting, challenging, and useful in my

work at Ingersoll Rand (IR). UW-L is very fortunate to have him leading the

graduate program. I want to thank my manager Brad Goetz at IR for giving me

time, guidance, and funding to see this project through to completion. Several

colleagues at IR played a role in this large project too and I want to give my

thanks to them also, Glenn Fernandes, Mike Jefferies, Sume Nagamanickam,

Aarthi Vedhavalli Gandhi Nathan, and Sundararajan Angappan. Ingersoll Rand,

in general, is very supportive, both financially and personally. Last I want to give

thanks to my biggest supporters, Jackie, my wife, and my three kids, Abby,

Micah, and Nathan. Jackie has always been very encouraging, understanding, and

patient with all the time that I have devoted to this project and the Master of

Software Engineering program. My young kids have also been real troopers with

all the time that this has taken my attention away from them.

v

Table of Contents

Abstract .. iii
Acknowledgements .. iv
Table of Contents .. v
List of Figures ... vii
List of Tables ... viii

Glossary ... ix
1. Background Information .. 1

1.1 State of Costing .. 1
1.2 Sales System Process ... 5

2. Project Goal and Overall System Requirements ... 8
3. Software Development Process ... 10
4. High level system architectural plan ... 17

5. Functional Requirements ... 19
5.1 Cost Cache File Builder ... 19

5.2 Part Cost DLL .. 20
5.3 Cost Interface DLL... 21
5.4 Unit Coster ... 22

5.5 Cost Template Designer ... 23

5.6 JCHQ and UPS ... 24
5.7 Cost Detail Review Tool (CDRT) .. 25
5.8 Automated Cost Loading ... 26

5.9 Miscellaneous Maintenance Screens .. 27
6. Design and Programming .. 28

6.1 User Interface Screen Designs ... 28

6.2 Architectural Design .. 28
6.3 Database Design ... 29
6.4 Programming Languages.. 32
6.5 Data Setup & Analysis ... 33

7. Validation and Testing... 35

7.1 Code Reviews ... 35

7.2 Gray-box testing ... 36

7.3 Usability Testing .. 37
7.4 Regression Testing and Automation .. 37
7.5 Component Testing and System Testing .. 38

8. Project Challenges ... 40
9. Continuing Work ... 42
10. Conclusion ... 44
11. Bibliography .. 45

vi

Appendix A: Cost Detail Review Tool Screens ... 47
Appendix B: Cost Template Designer Screens ... 51
Appendix C: Job Center HQ ï Price Rollup Screen ... 54
Appendix D: Ordering Nbr Assoc. Maintenance Screen 55

Appendix E: Cost Rate Maintenance Screen .. 56

vii

List of Figures

Figure Page

Figure 1 - Sales System Diagram (prior to the completion of this project) 7
Figure 2 - General outline of software re-engineering process 11
Figure 3 - The Waterfall Software Process ... 12
Figure 4 - The Prototyping Model .. 13

Figure 5 - Functional Requirement for MonitorSelectionQueue function 14
Figure 6 - Architectural Diagram of the Costing System 18

Figure 7 - Partial class diagram .. 29
Figure 8 - Partial ER Diagram of sales system DB .. 31

Figure 9 - Model View Control Framework ... 32

viii

List of Tables

Table Page

Table 1 - Example price table for motor horsepower option 2
Table 2 - Example Price Table for Sensor Accessory (Ordering Number Based) . 2
Table 3 - Example part rules for a motor part type ... 3
Table 4 - Test Case of Various Costing Method Scenarios 36

Table 5 - Test Case Scenarios Relating to Test Case in Table 4 37

ix

Glossary

Backlog

A collection of all products not yet manufactured, but customer commitment to

purchase those products has been received.

BOM

Abbreviation for bill of materials. It is a list of the raw materials, sub-assemblies,

intermediate assemblies, sub-components, components, parts and the quantities of

each needed to manufacture an end product.

Cincom

One of the manufacturing systems used in Trane. Made by Cincom Systems, Inc.

Cognizant

Consulting company contracted by IR to fulfill IT consulting service needs.

COJO or Coordinated Jobs

Team of people who perform job coordination (or discounting) functions with IR.

Configuration or Configured Product

Same definition as selection. It is a variation of a product after the sales associate

has picked all the options desired. A selection belongs to a Job.

Cost Template

The cost template is the attributes, set per product family, used in calculation of

costs of a selections from those product families. An application called the Cost

Template Designer will be used to create and edit these templates.

x

Design Special

A design special is a special option that is not offered via a standard

configuration. A sales associate can request these from the manufacturing

location. The manufacturing location determines design costs and charges and

provides the special pricing authorization (SPA) back to the sales associate.

DLL

Abbreviation for dynamic link library. It refers to Microsoftôs implementation of

the concept of a shared library, which is a library that can be shared by multiple

programs throughout the operating system.

ESTRNP

The production enterprise database. The FOE application transmits order data to

this database when an order is committed. Several other applications, like

KODIAK & MDP also run against this database in the order fulfillment process.

FOE

Abbreviation for Field Order Entry. This is an application used by Trane sales

associates that allows them to create and edit orders.

Gross Margin (or Margin)

The difference between revenue and cost before accounting for certain other

costs. Generally, it is calculated as the selling price of an item, less the cost of

goods sold.

HVAC

Abbreviation for Heating Ventilating and Air Conditioning. HVAC refers to the

technology of indoor and automotive environmental comfort.

http://en.wikipedia.org/wiki/Revenue
http://en.wikipedia.org/wiki/Cost

xi

IR

Abbreviation for Ingersoll Rand. IR is the parent company of Trane. IR is the

sponsor of this project.

Job

A job is a collection of configured products for a specific customerôs needs. A

job also contains many attributes such as location of building, customer name, etc.

Job Center

An application used by Trane sales associates that allows them to manage

equipment jobs, including configuring and pricing products.

Job Center HQ

A special version of the Job Center application used by the coordinated jobs

department for viewing jobs and managing the discounts given on jobs in the

quoting phase of the project. JCHQ is another abbreviation of this applicationôs

name.

MDP

Abbreviation for manufacturing data preparation. This is an application that

serves as a linkage between the front-end sales systems and back-end mfg systems

performing some order fulfillment functions. Part pick and validation rules are

set up in the system for use in validating selections and determining the BOM.

MDP background process

Applications that are outside of the MDP application, but triggered by changes

made within MDP. These background processes perform operations like

selection validation and part picking.

xii

Oracle BI or OBI

Abbreviation for Oracle Business Intelligence. OBI is a complete, open, and

architecturally unified business intelligence solution for the enterprise that

delivers capabilities for reporting, ad hoc query and analysis.

Order

An entity which ties the configured products to be purchased together along with

other information such as estimated ship date, ship address, etc.

Price Table

A product family can have several price tables, one for each category. A price

table contains rules which relate to selected options. Each rule can have a list $,

net $, and a cost associated with it.

Part Pick Rule

Within the MDP application, a part pick rule can be configured for a product.

The part pick rule relates selected options with a particular part, which is one

element of the BOM.

Re-engineering

The modification of a software system that takes place after it has been reverse

engineered, generally to add new functionality, or to correct errors.

Selection

A variation of a product after the sales associate has picked all the options

desired. A selection belongs to a Job.

xiii

SOTRNP

The production coordinated jobs database. The JCHQ application runs against

this database in the coordinated jobs process.

Testing

A type of validation applied to source code.

TOPSSÊ

Abbreviation for Trane Official Product Selection System. It is an application

used by Trane sales associates that allows them to select and predict performance

of Trane products operating under various conditions.

UPDS

Abbreviation for unitary product distribution system. It is used in the unitary

products division of Trane. It handles all the manufacturing system functions for

that business. It is an internally developed application.

UPS

Abbreviation for unitary pricing system. This is an application used for

coordination of the unitary light commercial products.

Validation

A process that confirms that the product (or partial product) meets the

expectations.

Verification

A process that confirms a development process or activity or task to be correct.

1

1. Background Information

The Trane Commercial Systems business of Ingersoll Rand produces and sells

a large range of products for the HVAC market. Most of these products are

engineered to order. This means that the product requested is built specifically for

the job based on the customerôs requirements. With this type of built to order

business, it is not easy to know the cost of the equipment prior to manufacturing.

For some models of products, there are literally trillions of ways that a product

could be configured. Because of the huge number of combinations, it is not

practical to build or maintain costs for all potential variations of a product. Prior

to the completion of this project, costs were not easily known at the time that list

prices were set. Additionally, costs were not known at the time that discounts

were requested for a job or at the time that the equipment was ordered. It was not

until the equipment was manufactured that the cost calculation was done within

each locationôs manufacturing system.

1.1 State of Costing

Two methods have been used for pre-sales cost calculation of configured

selections. One method employs a ñcost control unitò process, which involves re-

entering the configuration of the product in a separate system from the sales

application. The re-entered configuration is then costed, the process of

calculating the cost, in an overnight background process called the MDP

background process. This cost control unit process is error prone due to the re-

entering of the configuration, and it is time consuming because someone must

manually re-enter the configuration. It is also slow due to the need to wait until

the next day to find the result.

2

The second method that has been used is to determine a cost for each option

level price rule. Pricing is maintained at the option level with configuration rules.

Table 1 - Example price table for motor horsepower option

ACCY/SENS
Ordering
Number List Price

Without zone sensor $0.000000

Room sensor w/override button BAYSENS573A $100.000000

Room sensor w/temp adj. and override BAYSENS574A $117.000000

Single set pt manual changeover sensor BAYSENS606A $96.000000

Dual setpoint changeover sensor BAYSENS608A $156.000000

Dual setpoint w/system lights sensor BAYSENS610A $328.000000

Programmable sensor w/night setback BAYSENS619A $511.000000

Digital display zone sensor BAYSENS635A $190.000000

Digital Display Wireless Zone Sensor BAYSENS550A $352.000000

Table 2 - Example Price Table for Sensor Accessory (Ordering Number Based)

3

Table 3 - Example part rules for a motor part type

Table 1 and Table 2 show examples of what a price table might look like. Each

row of the price table is called a price rule. Table 1 is a price table on the motor

horsepower (MTHP) category. This price table has 2 factors, motor horse power

(MTHP) and unit voltage (UNVT). Based on the options within those two

categories, the price is set. What this means, for example, is that if the sales

person specified this product with a ½ horsepower motor running on 208 volts, 60

4

hertz, single phase power, then the list price is $280.89. Table 2 is an example of

a price table that directly relates the price rules to a unique ordering number. This

price table only has one factor, which is the type of sensor (SENS) picked. In this

example, if the ñDual setpoint changeover sensorò was picked with this product,

ordering number ñBAYSENS608Aò would be chosen with a list price of $156. In

Table 3, an example of a set of part pick rules is shown. In this example, the part

pick rules are all for a motor part relating to the same product for the price table in

Table 1. In this case there is exists a relationship between the price table in Table

1 and the part pick rules in Table 3, since both have the same factors. This is

normally not the case. This makes relating the parts and associated cost very

difficult and labor intensive. Additionally, because the costs are difficult to

capture, the cost data can get stale and therefore becomes invalid. To capture the

cost at the option level, many cost control orders are created to try to determine

the costs for the options. This is not an exact science and takes quite a bit of

analysis to figure out how to extract the option cost out of the total cost. It should

also be noted that the cost is determined based on parts, like screws, and the

prices are based on options, like unit size. As a result, making the price and cost

align is pretty difficult.

Other factors contributing to the difficulty in obtaining costs are related to

differences in how the products are manufactured and set up for sales, and

differences in the manufacturing systems. Although the products manufactured

by Trane are for the same industry, HVAC, that does not mean the products are

similar. Trane manufactures everything from small variable air volume (VAV)

units all the way to large CentravacÊ Chillers. The most complex products are

probably the modular climate changer products. There are also electronic controls

products and other aftermarket products, like rebuild kits. The wide variation in

products, supported by the system, adds to the complexity in costing, because

each different type of product has different costing needs. The manufacturing

locations spread out throughout the country also have different manufacturing

5

systems and different means of handling cost and margin. For example, the

unitary light commercial products out of Clarksville and Lynn Haven have an

entirely different kind of manufacturing systems than the rest of the locations.

Those locations also calculate their margin a bit differently than other locations.

They include outbound freight cost and warranty reserve costs in their pre-sales

margins, whereas other locations do not.

1.2 Sales System Process

Before the sales process starts, the productôs sales setup must occur. Product

setup includes determining what options are to be offered and what the pricing for

the options will be. On the manufacturing system end, BOM rules are created and

costs are assigned for the parts. During the sales process, the product options are

chosen within the Job Center or TOPSS application. Once all the options are

picked, a list price can be determined for the configured unit, also referred to as a

selection. Sales associates have the ability within the sales system to discount the

list price to a certain level. Beyond that level, the sales associate must escalate

the job for discounting, also referred to as coordination. The coordination team

can authorize and assign discounts, or they can escalate for an upper management

decision. Following the customerôs decision to accept the offer, the order enters a

committed status and is transmitted by the FOE application back to the enterprise

database. This also puts the order in a queue for manufacturing based on the

entered ship date. When the manufacturing location is ready to build the unit, the

order is run through the MDP application to complete the BOM, resulting in a

serial number assignment, among other things. The Cincom or UPDS

manufacturing system picks up the BOM information from MDP and carries the

unit through its system. Following shipment, the financial system picks up the

information, including the sales price and cost, and determines gross margin.

6

In terms of applications and databases, the diagram in Figure 1 shows the

various systems involved in the sales process. The initial product and pricing data

setup mentioned above is performed by the data maintenance applications running

against the Oracle enterprise databases (ESTRNP). A monthly replication of the

product and pricing data from ESTRNP to a Sybase master occurs. The Sybase

master data is then pushed into each of the Sybase sales office databases. The

data associated with the sales associateôs configuration is stored in the sales office

Sybase database. When the sales associate requests a coordination to occur for

discounting, the sales associateôs job data is transferred to SOTRNP, the Oracle

coordinated jobs database. A special headquarter version of Job Center, called

Job Center HQ is used to complete the coordination. For jobs with only unitary

light commercial products, another application, called UPS, is also used for

coordination. Authorization of discounts is then passed back to the enterprise

database so that if and when the order is committed, a validation of discounts can

be done. Once the job is accepted by the customer, an order is created in FOE

and the committed order data is then passed to the ESTRNP database. From that

point the order is processed by the Kodiak, MDP and Cincom applications or

Kodiak and UPDS applications (for unitary light commercial products). For the

Cincom portion, some data is fed into the Cincom database. The financial system

runs on its own database, FSTRNP, and pulls in pricing and cost from the

ESTRNP and Cincom databases.

7

Figure 1 - Sales System Diagram (prior to the completion of this project)

8

2. Project Goal and Overall System Requirements

The goal of this project is to provide a complete unit cost for all products at any

point after the configuration of a unit is complete. This cost will be determined

based on the configuration and will not require re-entry of the configuration, as

has been the case for cost control unit process. It should also be calculated in

real-time or near real-time, on demand. The cost calculation should be initiated at

the time of discounting based on the configuration stored in the coordinated jobs

database, when a sales associate submits the job for coordination. These costs

will feed an application called Job Center HQ that allows headquarters

coordination staff to see the complete job, the cost, list price, sales price and

margin. The cost calculation should also be initiated later in the cycle at the time

the order is committed based on the configuration stored in the enterprise

database. Both costs for job coordination and costs for committed orders will

feed a pricing analytics tool called PROs. Additionally, the costs will flow into a

data warehouse for backlog reporting (i.e. reports on equipment not yet

manufactured) via Oracle BI.

A secondary goal is to be able to preload ordering number costing into the

enterprise database and associated price tables so that the costs are available at the

time that the list prices are set for those items. This is an important goal because

it establishes the relationship early on and thus avoids running into missing

ordering number, and therefore missing cost, when a configured unit is in need of

costing. Most of the time an ordering number will represent a complete accessory

item which is sold with a configured product. Other times an ordering number

can represent a complete ñbuilt to stockò type product.

These system requirements were developed based on the companyôs goals as

expressed by Rick Aldridge, who realized all these gaps in the current system.

All of the requirements were to be satisfied within the context of the existing

9

system, as described in section 1. A means of setting up a costing template for

each product was needed, as was functionality for taking a configured job and

producing a cost. Modification to the Job Center HQ application was needed to

pull in the new costs and calculate and display the margin. A means of displaying

the cost details was needed for investigation of costs. Functionality for automated

cost loading was also required. All of these business requirements have been

factored into the systemôs architectural design, as described in section 4, and

functional requirements, described in section 5.

10

3. Software Development Process

When taking on any large project, it always seems to work best to break the

overall project down into parts. With this project, the first step that the author

took was to break the overall project into three categories. At the core of the

project there needed to be the functionality to be able to cost a selection at any

point in the sales process. So the costing functionality was one of the three main

categories. Prior to costing a selection, the costing functionality needed to have

some information to drive it. The maintenance system, providing attributes onto

the products, was the second category of the project. The third category of the

project was the functionality to display the costs and use those cost for margin

calculations.

From these three categories a high level architectural plan was developed to

describe the components needed within each of the three categories. Within the

costing functionality category, the main components needed were: 1) the Unit

Coster, which was to run 24x7 costing selections as needed, 2) the part costing

DLL and cost interface DLL were two other key components needed to cost

selections based on the type of costing needed, and3) the cost cache file builder

was needed to routinely build cache files for the part costing DLL to use.

Within the second category of the project was the cost template designer

application which allowed users to set the cost attributes for each product.

Additionally, cost rate maintenance and ordering number cost relationships

maintenance were needed to provide rate data and ordering number relationships.

Within the third category of the project, the JCHQ and UPS application

changes were required to view costs and calculate margin. The cost detail review

tool was another component in this category, designed for display of the cost

breakdown for a selection. The third component within the third category is the

use of the cost data in pricing analytics, via PROs, and in reporting, via Oracle BI.

11

After the high-level architectural design was completed, each one of the

components of the system was developed one at a time. Although the

components were interrelated, a sequenced development order of components was

determined, so that each could be developed in a somewhat independent manner.

This helped break the large effort down into manageable sized chunks. It also

allowed for small successes and useable pieces, on the road to developing the

entire system [3].

It took a few different software engineering models to develop each of the

components. The initial development was focused on the re-engineering of the

existing part pick functionality, known as the MDP background process, which

was written in Unix C to run on the database server. This effort to build the Part

Cost DLL did truly follow a traditional re-engineering process. The goals of this

effort were: 1) to get the costing to run on a Microsoft Windows server, 2) to run

against the VPFC/VPC/SI data as opposed to FCAT/FCODE data, 3) to run

discounted from the database for the part pick rule processing, and 4) to include

an association from parts to their cost so that total unit cost could be calculated.

Figure 2 - General outline of software re-engineering process

(Based on [5], page 219, exhibit 15-4)

12

The diagram in Figure 2 shows a general outline of the software re-engineering

process [5]. Re-engineering starts with an existing system. Understanding of the

existing functionalities and structure and transforming them into new structure are

the key parts. In this case, the MDP background process was the existing system

that had to be understood. This code is massive and literally hundreds of

functions were involved in the re-engineering process. There was no

documentation for these functions outside of the comments embedded in the

source code, therefore the source code served as the main basis for understanding

the existing requirements. Another aid in understanding the functions was the

data which has been set up for the part pick and validation rules for each product.

There was documentation on the various rule formats and that did serve as a

beneficial resource. The last source of knowledge on the existing system was the

output data. Having the input and output data for the existing functionality also

served as a great means to test the resulting Part Cost DLL and verify that its

results were equal to the existing MDP background process.

Figure 3 - The Waterfall Software Process

(Based on [2], page 2, figure 0.3)

13

For many of the components of this system, the traditional waterfall model was

used. The waterfall model works great for applications or functionality which do

not have a user interface. In this system, the waterfall model, as shown in Figure

3 [2], was used for: 1) the Cost Cache File Builder, 2) the Cost Interface DLL, 3)

the Unit Coster, and 4) the Automated Cost Loading functionality. Each of these

components was developed independently in its own waterfall process and linked

into the system as it was completed. As described in section 5, the functional

requirements, developed by the author, were completed and reviewed with the

sponsors. The design, as described in section 6, was also completed by the

author. For most of the components, the programming was completed by an

intern or Cognizant consultant. The code was reviewed by the author during the

development and after completion prior to testing. Testing, as detailed in section

7, was also mainly completed by the author. In one case an automated test suite

was used, managed by a separate Cognizant testing team. Following deployment,

as with many new systems, some maintenance work was also required to work out

a few unplanned issues.

Figure 4 - The Prototyping Model

(Based on [17], page 53, figure 2.5)

14

The prototyping model [17], shown in Figure 4, was used for several

components of the system where a graphical user interface was required. Those

components included: 1) the cost template designer, 2) JCHQ & UPS, 3) the Cost

detail review tool, and 4) the cost rate maintenance and ordering number cost

relationships maintenance screens. The prototyping model was ideal for these

components because they required a fair amount of interaction with the users who

had a hard time articulating the requirements. Once the users could see and

interact with the prototype, then the specific requirements of how they would

interact with the UI, and what data they needed to see, came to light.

Figure 5 - Functional Requirement for MonitorSelectionQueue function

(from [12], page 5)

Within the waterfall or prototyping models, functional requirements were

written for the components of the system [6,8-13] by the author. The IEEE

Standard 830-1998 for writing software requirement specifications [4] was

followed for these documents. The requirements for each of these components

will be described further in section 5, but listed in Figure 5 is an example of a

requirement written for the MonitorSelectionQueue function of the Unit Coster

15

[12]. This is a functional requirement written for the monitoring of the selection

queue and the response taken if a selection exists.

The design phase of the processes mainly followed the UML design standards.

The best quote to represent the place of UML in the development process comes

from The Unified Modeling Language User Guide: ñThings that are best

expressed graphically are done so graphically in UML, whereas things that are

best expressed textually are done in the programming languageò [1]. This

included some use case diagrams, class diagram, and ER diagrams in this project.

The author took the functional requirements and developed those UML diagrams.

Because of the lack of one clear functional expert in this area, and uncertainty

from business sponsors, some of the requirements were revisited and revised after

the development or testing had started. There was nothing that required an

overhaul, it was just minor enhancements and fine tuning of the requirements that

occurred to exactly meet the needs that arose. For example it was assumed that an

ordering number would only appear in one price table, and therefore only appear

once within a selection. Although it doesnôt occur very often, some cases to the

contrary were discovered after running tens of thousands of configurations

through the costing functionality. A correction to the functionality had to be

made to account for duplicate ordering numbers in a selection.

After the design was completed, either an intern or Cognizant consultant took

the design and requirements and used them to do the programming needed.

Throughout the coding and after the completion of the coding, the author

completed code reviews to make sure that good programming practices were

followed and that the design was interpreted correctly. Additionally the code

reviews served as a basis for gray box testing.

Testing and deployment were the final pieces. These were also completed by

the author. Testing involved white box, black box, and gray box testing. Unit

testing of the functions occurred to ensure their accuracy. Gray box testing

involved testing the components based on knowledge of how the code was put

16

together. Black box testing was performed on some components using an

automated test suite in some cases and manual testing in others. Black box testing

was performed by a separate Cognizant development team using the requirements

as a basis for what needed to be tested. Additionally some components were put

through a semi-automated test by the author to test the resulting costs against

known cost results from the manufacturing systems.

17

4. High level system architectural plan

Given the fact that the existing Trane sales and manufacturing system needed

to stay intact, the architecture of the costing system was expected to revolve

around that existing system without disturbing it too much. Additionally, in order

to accomplish the goals of this project, it seemed like breaking the needs down

into components of the system would help break the daunting task into several

smaller projects which could be accomplished. Creating a componentized system

would also add to future reusability.

From the existing sales and manufacturing system, shown in Figure 2, the high

level architectural plan was formed which would shape the direction of the

project. The result of this planning stage was a diagram of how things would fit

together inside of the existing Trane sales and manufacturing system, and a

document describing the purpose of each of the components [7]. That resulting

diagram is shown in Figure 6.

As described in section 3, there were three categories of needs that were taken

into account: 1) maintenance components to maintain data supplied to the costing

functionality, 2) the costing components, and 3) components to view or use the

cost data. The design of the costing system takes into account these categories of

components. Within the maintenance components, there is: 1) the cost template

designer application, which allowed users to set the cost attributes for each

product, and 2) the cost rate maintenance and ordering number cost relationships

maintenance components, which were needed to provide the rate data and

ordering number relationships. The costing components needed were: 1) the Unit

Coster application, which was to run 24x7, costing selections as needed, 2) the

part costing DLL for costing products set up for part costing, 3) the cost interface

DLL, which was to cost products having all other costing methods, and 4) the cost

cache file builder, which was needed to routinely build cache files for the part

costing DLL. Within the category of components to view or use the cost data, the

18

following were needed: 1) changes to the JCHQ and UPS applications to view

costs and calculate margin for the coordinated jobs process, 2) design of the cost

detail review tool for display of the cost breakdown for a selection, and 3) a

means of feeding the cost data to the PROS pricing analytics tool, and to the data

warehouse for use in Oracle BI reports.

Figure 6 - Architectural Diagram of the Costing System

19

5. Functional Requirements

Functional requirements were identified for each component of the system.

Software requirement specifications were written for each component based on

the IEEE Standard 830-1998 for writing software requirement specifications [4].

A brief summary of the functional requirements for each component is explained

in a subsection below.

5.1 Cost Cache File Builder

The functional requirements for the cache file builder were developed in

tandem with the functional requirements for the Part Cost DLL. The cost cache

file is a component needed to build cache files on a nightly basis to hold all of the

part pick rules, product data, and part costs needed by the Part Cost DLL to cost a

selection without going to the database. The requirement to use cache files was

not a business decision but a design decision based on the fact that the cache files

could be formatted and presented in a way that would make the Part Cost DLL

more efficient. The Part Cost DLL will need to cost a selection as quickly as

possible and using cache files allows us to speed up the process. A second reason

for using a cache file was that the manufacturing system databases were known to

have frequent outages; putting the part costs into cache files eliminated the

possibility of the database outage interrupting the costing operation.

The functional requirements for this component [11] included retrieving data

from the database in a specific arrangement and storing it in a file format. This

component was required to be built with a high level of robustness to deal with

database outages, mentioned above. If repeated database connectivity became an

issue while the cache file builder was trying to retrieve its data, the fallback

operation was to copy the previous dayôs files for that manufacturing system

20

database. E-mail notification of success or fallback are required to be sent

following the completion of it process every night. The cost cache file builder

component was not required to have UI. It is initiated nightly on a Windows

Server from a task scheduler. It builds its files prior to midnight and puts them in

a folder with the next dayôs date. The Part Cost DLL always uses the folder for

that date for processing the costing requests, so at midnight the Part Cost DLL

switches to the new dayôs cache files.

5.2 Part Cost DLL

The existing MDP part pick functionality was the basis for the Part Cost DLL.

It had all the rule processing functionality needed, but it was written in Unix C

procedural style, designed to run on the database server against the enterprise,

designed to work on FCATs and FCODs as opposed to VPCs and SIs, and not

designed to calculate costs, but only pick parts (i.e. build a BOM). The

cornerstone to the success of this project was going to be whether this code could

be reengineered into a C#.NET object oriented version. The MDP part pick code

was very large so this was not an easy task. The first order of business was to

analyze all the functions of the code and understand what each did. The main

requirements were: 1) converting the C code to C#.NET, which involved

modifying C string formatting to C# style, 2) converting the procedural code to an

object oriented version, 3) removing and replacing the FCAT/FCOD functionality

with VPFC/VPC/SI functionality, 4) using the cache files as opposed to the

database calls to retrieve its data, and 5) adding functionality to look up costs for

each part and tally the results. The Part Cost DLL was designed with no user

interface, but it does need an application interface so that it can be called from

other applications. In this system, the cost interface DLL is the component that

invokes the part cost DLL. The cost interface DLL passes selection configuration

data to the part cost DLL, which returns the cost and part list.

21

5.3 Cost Interface DLL

The purpose of the Cost Interface DLL is to handle all types of costing requests

It consisted of the following four methods: 1) Part Costing, 2) Price Table

Costing, 3) Ordering Number Costing, and 4) Model Number Costing. The part

costing method, which uses the Part Cost DLL described in section 5.2, is the

preferred method for costing build-to-order products. This method is designed to

cost products dynamically based on the part pick rules and the part costs. Another

method, price table costing, has been around for some time. The cost values are

entered into the same rule-oriented price tables as the list and net price values.

The difficulty with this method is in keeping the costs up to date and accurate.

This method is needed for products which are sold in the Trane sales system, but

are manufactured by another company, although the method can easily be set up

for any product. Ordering number costing is for use in build-to-stock products

and accessory items. These items have a pre-assigned ordering number, which

can be directly referenced in the manufacturing system to find the cost of that

item. Model number costing is the last method. The model number can be built

from the specified product configuration. That model number can then be directly

referenced in the manufacturing system to find the cost of that model.

The Cost Interface DLL is passed a selection ID. The DLL retrieves the

configuration of the selection and cost template for the product from the database

and then processes that selection using one of the four methods. The resulting

cost and cost details for the selection are then passed back to the calling

application. The Cost Interface DLL was designed with no user interface, but it

does need an application interface so that it can be called from other applications.

In this system it is called by the Unit Coster application. For testing it has been

set up to be called from the automated test apparatus.

22

5.4 Unit Coster

The Unit Coster is an application that runs 24x7, checking for selections to

appear in its queue [32]. This application runs on a Windows server within the

Windows task scheduler. The application has a modest user interface to display

activity and allow for the application to be exited; however, because the

application will run on a server and be invoked through a special application

account, no one other than the developer will ever see the user interface. The

most important requirement of this application is robustness. It needs to log

errors and continue functioning no matter what happens. The application

monitors a queue for selections. The queue is actually just a database table set up

to hold records containing a selection ID, date/time created, number of processing

tries and date/time of the last attempt. When one or more selections are present in

the queue, the application begins costing the first selection in the queue by

invoking the Cost Interface DLL. When the application begins costing a

selection, it modifies the queue recordôs last attempted date/time to indicate that it

has recently been tried. It also increments the attempt counter. If the costing

attempt succeeds, the application removes the record from the queue. It then adds

a record to a costing feedback table to indicate date/time of processing and total

process time. It also saves the cost and cost details information to a master and

child table. If the costing request fails, the application moves onto the next record

in the queue. It ignores all records with a process attempt date/time within the last

hour by employing a where clause which filters out all records which have failed

in the last hour. When a preset number of attempts have been tried the application

logs the failure in the feedback table and then removes the record from the queue.

23

5.5 Cost Template Designer

The cost template designer is a key application in the system because it

provides the ability to maintain the cost attributes for each product [9]. These

attributes dictate how the Unit Coster will process a costing request for a

configuration of that product. The simple attributes include: unit costing method,

cost type (standard or current), and manufacturing system source database. There

is also a means to override the main costing method for specific product

categories. For example, a product may use the part costing method, but several

accessory categories may use ordering number costing.

A second main requirement for the cost template designer is to provide a means

to initiate an automated cost load request for a product. Included in this is the

requirement to break down the request by the productôs category. Essentially, the

request process consists of saving the request to a database table with the e-mail

address of the person making that request, and storing a breakdown of the

productôs categories into a related table. The request is then picked up by the

automated cost loading background process and processed.

A third main requirement of this application is to provide a means of editing

rates for warranty and outbound freight cost for a product. The application also

provides a means to override the base productôs rate for any product codes. For

example, the rate for the main product may not apply to certain accessories

included with that product. Those accessory items will have a different product

code and therefore the application must allow the main rate to be overridden.

24

5.6 JCHQ and UPS

The JCHQ (Job Center HQ) application has existed for many years. It is used

by a team COJO team. It is also used by some other product support groups in the

manufacturing locations. The application provides a means to view all the

selections on a job and set discounting factors to provide discounts requested by

sales associates. The requirements for the changes to this application involve

adding new columns into the price rollup screen [10]. This screen allows the

users to view several different price types and rates. The new columns required

are: 1) Standard Manufacturing Cost, 2) Warranty Cost, 3) Freight Cost, 4)

Entered Standard Margin %, 5) Authorized Standard Margin %, 6) Entered

Freight and Warranty Adjusted Margin %, 7) Authorized Freight and Warranty

Adjusted Margin %, 8) Entered Contribution Margin %, and 9) Authorized

Contribution Margin %. The columns are needed to allow JCHQ users to see the

costs and margins and use those values in discounting decisions. JCHQ uses the

cost data that the Unit Coster has saved to the coordinated jobs database.

Formulas for the margins are based on feedback from personnel in finance, to

determine precisely what was needed.

Another requirement is the ability to launch the Cost Detail Review Tool from

JCHQôs price rollup screen. This has been implemented via an onscreen link that

calls a URL to bring up the browser. Part of the URL includes the Job ID of the

job currently displayed on the price rollup screen. This enables the Cost Detail

Review Tool to go directly to a display of the selections on that job, allowing the

user to quickly get to the details of the cost for a selection.

UPS (Unitary Pricing System) is also an existing application, used to display

price and cost on configured selections. UPS is only used for coordinating jobs

consisting solely of unitary light commercial products. The requirements for this

change only involves build-to-order products. Most of the products handled by

UPS are build-to-stock products. UPSôs cost for those items is accurate, but for

25

the configurable products it is not. The required change involves bringing in cost

for those units as calculated by the Unit Coster. No other changes to the existing

system are required.

5.7 Cost Detail Review Tool (CDRT)

The need for the CDRT (Cost Detail Review Tool) came out of the need to

provide product support personnel and cost accountants a means to view more

than just the total cost. CDRT provides a means to drill down into the costs of a

selection to see every detail of the cost. It is required to be a web tool, in order to

provide an easy way to access the data from within the IR network [8].

The application provides several means of searching for a selection, and thus a

selectionôs cost. It supports searching by coordinated job, by committed order, by

product code, and by product family. Based on the search filter, the search results

are displayed in a grid. The grid provides several columns of information, and

also a link to drill down into the costs for that selection. The selection details will

be displayed differently based on the costing method. For the part costing

method, it will display all the parts and their costs, along with a separate table of

list pricing per option. For ordering number costing, the display is similar to the

part costing display except that instead of displaying parts, it will display the

ordering numbers and their costs. For the price table costing method, the display

of the cost is combined with the list prices, since this information all comes from

the same source and is directly related.

26

5.8 Automated Cost Loading

The automated cost loading application is designed to run on a server, so it is

not intended to be seen by the users. According to the functional requirements

document [6], automated cost loading requests will be made through the cost

template designer and stored in two tables. The automated cost loading

application will routinely scan for new requests in those tables. When it finds

one, it will start the cost loading process. This process involves linking the

ordering numbers from the price tables into the ordering number cost tables, as

described in the next paragraph. The costs are then loaded back into the price

tables so that the user will have the cost shown side-by-side with the list prices

that they have set. This provides a means to verify accuracy of the list prices

based on reductions or increases in the costs of those items.

A stored procedure is needed to collect the standard cost values for all ordering

numbers used in the Trane products on a routine weekly basis. This stored

procedure will cycle through the current ordering numbers; adding costs for any

new ones and updating costs for any modified ones. The difficulty with this is

matching the ordering number from the sales system to the manufacturing system.

Some differences involve whether the ordering number is with or without dashes,

with our without spaces, and some even have characters appended at the end of

their string. The big advantage of running this procedure prior to the ordering

number ever being selected in a configured unit that needs to be costed is that

mismatches can be caught right away. Notification of mismatches will be sent to

a designated list of users, including the author. Those items can then be manually

corrected within the ordering number cost relationships maintenance screen

described in section 5.9. Once the relationship is established, the costing will

continue without intervention in the future. As an example, in the enterprise

database, the ordering number is called ñ0233-0540-02-00ò whereas in the Macon

Cincom database the unit is called ñ0233054002000ò. The stored procedure is

27

designed with some ability to handle differences, like stripping out the dashes, but

sometimes the differences cannot be handled.

5.9 Miscellaneous Maintenance Screens

Two final requirements are the addition of a pair of maintenance screens to the

Data Maintenance Center (DMC) application, in order to provide a way to

maintain some product-related data associated with the cost system. The first

screen is for overall maintenance of the rate for the cost add-on, like warranty and

outbound freight cost. Section 5.5 outlined the ability to maintain the rates for

warranty and outbound freight within one product. This new maintenance screen

allows the user to edit data in the same database table, but also provides the ability

to view or edit the rates for several products at the same time. It is designed so

that the user can quickly select several products and do an update on all their rates

at the same time.

The second screen is for maintenance of the ordering number cost relationships

used in the stored procedure described in section 5.8. There are only two

attributes involved in the relationship between the sales and manufacturing system

that need to be edited when the relationship cannot be determined. The source

manufacturing system database is the first attribute. This can be any one of the

ten Cincom databases, or the UPDS database. The other attribute is the ordering

number used in the manufacturing system database to identify the item. The

number will resemble the one used in the enterprise database, but may use other

or no separators between characters. Once those two attributes are modified, the

next time the stored procedure, described in section 5.8, is run again, it will be

able to starting getting costs for that item from the source database.

28

6. Design and Programming

From the functional requirements a design was established for each of the

components. The design was on an object-oriented approach. UML diagrams

such as use case diagrams and class diagrams were used. In addition to UML

diagrams, ER diagrams were created for the data base design. From there, the

programming of the applications began using several programming languages and

tools. In this section the author will discuss the design and programming

techniques used for this project.

6.1 User Interface Screen Designs

When working on any of the components that required a user interface (UI), the

design work usually starts with the UI. This project also followed the same

technique. This included how the application was going to flow from one screen

to another, what information be shown, and what actions would be occurring on

each screen. The UI often dictated how the functional requirements would be

developed, and so this process often occurred in conjunction with development of

the functional requirements. Taking these designs and developing the working

prototype of the UI was the next step. This allowed users to see the flow and look

of the application without investing a large amount of time. Revision could easily

be made at that point and new prototypes could be reviewed, all prior to

completing the functional requirements.

6.2 Architectural Design

Based on groupings of functional requirements, classes were created for each

29

group. Based on the classes, all functional requirements were aligned with a

corresponding class and turned into methods and attributes. Figure 7 shows part

of the class diagram for the Part Cost DLL. In the upper right you can see the

main class, CostCalculator, and the main interface functions to the Part Cost DLL,

such as those to ñCreateAndValidateSelection()ò, ñCreatePartListTable()ò, and

ñValidateSelection()ò also appear. The associations to the other classes, like the

ñValidationò class are also shown in figure 7.

Figure 7 - Partial class diagram

(complete diagram appendix F)

6.3 Database Design

The existing database design used in the sales system dictated much of the

design for this costing project. Several new and modified database schema were

required to implement all of the functionalities required. New tables, views,

30

triggers, roles, DB links, functions, and procedures were added to the ESTRNP

and SOTRNP databases. Some of the tables were added with foreign keys to the

sales system tables to maintain referential integrity. The following is a list of just

the tables that were added along with their purpose:

1. The PROD_FAMILY_COST_SETTING table was added to hold the main

attributes for each product family that are needed in the costing operation.

2. The UNIT_COST_PROCEDURE table was added to hold overridden

methods within a category of a product family.

3. The BU_COMP_COST table was added to hold the cost values (freight,

warranty, direct material and direct labor, variable overhead, fixed

overhead) for each ordering number.

4. The COST_ADD_RATE table was added to hold the freight and warranty

rates at the product family or product code level. These rates are used to

determine the cost by multiplying the rate against the manufacturing cost.

5. The PRICE_TABLE_COSTING_REQUESTS table was added to hold

requests for automated cost loading for product families.

6. The PRICE_TABLE_REQUESTS table contains child records of the

record in PRICE_TABLE_COSTING_REQUESTS table and is designed to

hold the categories chosen in a costing request.

7. The COST_CALCULATION_FEEDBACK table was added to hold

additional information collected during the unit costing operation. Errors,

warnings, and process time is some of the information stored in this table.

8. The SELECTION_QUEUE_FOR_COSTING table was added to hold

requests for the unit costing of selections and the date/time added. The

Unit Coster processes the selections in this queue table based on order.

9. The SEL_PC_COST table was added to hold the total cost values for a

selection.

31

10. The SEL_PC_COST_DETAIL table was added to hold the cost values for

the parts of the total selectionôs cost. It is a child of SEL_PC_COST.

Figure 8 - Partial ER Diagram of sales system DB

32

Figure 8 shows a portion of the sales system ER diagram with the new tables

highlighted in fuchsia.

The reason behind storing the part rules and costs in cache files is due to the

fact that the manufacturing system databases have many outages. Running off the

cache files provides a way to work around the database outages and also provides

a performance improvement.

6.4 Programming Languages

Several programming languages were used for this costing system. C#.NET

was used for the Unit Coster, Cost Interface DLL, Part Cost DLL, Cost Template

Designer and the Cost Cache File Builder. The main reason for using C#.NET for

these components was the authorôs familiarity with that language/compiler. That

language is the primary one used in the authorôs department for Windows client

applications. Another reason was the ability to build the components in a modular

fashions for reusability.

Figure 9 - Model View Control Framework

(Based on [15], page 345, figure 13.1)

For the Cost Detail Review Tool, ASP.NET was used. The application was

built with the MVC (model view control) framework, as shown in Figure 8, and

JQuery. The model view controller framework separates the model, view, and

33

Controller into 3 separate modules [15]. The model is responsible for managing

the data. The view is responsible for the display of the data provided. Lastly, the

controller is responsible for converting user input into calls to invoke the model

and view. The reason for using ASP.NET with JQuery is that this language is

what others in the group were experimenting with for other new application

development. This approach provides a tiered, light weight infrastructure for

deploying the functionality over the web. The need for an easily accessible, zero

footprint framework for the delivery of the information was needed to reach all of

the people using the system, without requiring setup or training support.

For part of the automated cost loading, stored procedures were developed to

automate the loading of the cost data into the Enterprise database. Stored

procedures were written in PLSQL. One stored procedure was developed to

update the list of ordering numbers. The other stored procedure was developed to

compare and update the costs of the ordering numbers when different.

6.5 Data Setup & Analysis

Analysis of the setup of the products, their pricing, and their cost data was a

large part of this project. Figuring out how to cost the product required an

understanding of the connections between the data from the product and pricing

setup all the way through to the cost calculation. No one person was able to

supply all the information necessary to build a complete set of requirements for

the project. Instead, that information had to be pulled together from pieces held

by several different groups. The databases used also served as a good source to

determine how things worked. The pricing data setup for the products served as

one of the best sources of knowledge. Some productôs pricing was set up with the

ordering numbers in the pricing rules. For some products every single price rule

had an ordering number. These products were set up with the ordering price

34

method. For the products which had MDP part pick rules setup, the part costing

method was used. Furthermore, for some parts of the pricing, ordering numbers

were used. In the discovery phase, this analysis pointed out a need to have a

mixture of costing methods. For products manufactured by external vendors,

fortunately, those costs were maintained well within the pricing rules. These

products required the standard price table costing method. Later, during the

development of the Unit Coster application, the need for the model number

costing method arose. This became apparent after talking with others and

reviewing how the data was set up for those products.

In testing the cost calculated by the Unit Coster for a few products costed with

the part costing method, it became apparent that costs did not match the unit costs

in Cincom. Upon further discovery, it was found that these products had other

costs added on at the time of manufacturing. For these products, it was decided to

continue using the standard price table costing method for now and in a future

phase of this project determine a way to cost these products dynamically.

35

7. Validation and Testing

Validation of the requirements with the business partners was completed to

ensure that the system was developed in accordance with the businessôs needs.

The validation of the overall system requirements occurred before the high level

system architecture was designed. There was also a validation step after the

completion of each of the componentôs requirement documents.

Several testing methods were used in this project. The methods were based on

the situations and also varied according the development process followed. Code

reviews, gray-box testing, black-box testing, usability testing, regression &

automated testing all played a role in the successful testing of the components of

this costing system.

7.1 Code Reviews

Because most of the programming was completed by someone other than the

author, code reviews were a key component of the testing effort. All the code

developed by others went through a code review by the author. Several things

can be gained from good code reviews: 1) making sure the code followed the

design, 2) making sure the code was understandable or commented so that it could

be easily maintained in the future, 3) checking that the code followed the teamôs

coding standards and guidelines, 4) checking for correct use of object-oriented

methods and variables, including correct visibility, and 5) gaining knowledge of

the code to be used in gray-box testing, including boundary conditions.

Additionally, once code is developed, duplicate code, used in different areas, may

become apparent. Revising duplicate code into common methods is often

required.

 Code reviews were especially important in this project because often

inexperienced interns or offshore consultants were used, and their coding

36

practices were not as good as those of an experienced programmer. Following an

initial code review, corrections were made by the programmer and the code was

then re-reviewed. In some cases it took several iteration of this process to get

things correct.

7.2 Gray-box testing

Gray-box testing was used extensively by the author. Gray-box testing is a

combination of white-box testing and black-box testing [16]. As with black-box

testing, the requirements for the components were tested. Based on the code

reviews, the author had a better idea of code that processed the functions, so some

testing was completed with that knowledge in mind. In this gray-box testing, all

functional requirements were tested for accuracy. Test cases were created for

each functional requirement and were executed. Any problems found were sent

back to the programmer for correction. Shown in Table 4 is one test case in

which 12 scenarios, shown in Table 5 were run. These were different scenarios

meant to test the functionality of the Unit Coster. The scenarios include the

common situations, and the error handling capability of error situations.

Table 4 - Test Case of Various Costing Method Scenarios

37

Table 5 - Test Case Scenarios Relating to Test Case in Table 4

7.3 Usability Testing

For the components of the system that required a user interface, a usability test

was performed with the actual users to get feedback as to how easy the system

was to use and how intuitive it was to understand. Usability is a measure of

appropriateness, functionality, and effectiveness of the interaction with the user is

[16]. Usability testing was performed on these components: 1) the cost template

designer, 2) JCHQ & UPS, 3) the Cost detail review tool, and 4) the cost rate

maintenance and ordering number cost relationships maintenance screens. This is

an important step because whether it is in a prototype development, or final

release of an application, users should not complain about usability. Several good

things were learned in the usability testing of these components. Those

suggestions were incorporated in the final versions to meet the userôs needs.

7.4 Regression Testing and Automation

The JCHQ application had an automated regression test developed well before

this project started. The regression test was setup to ensure that enhancements to

Scenario 1 Part Set Costing (no overrides)

Scenario 2 Part Set Costing (with ordering number overrides)

Scenario 3 Part Set Costing (with list to cost override)

Scenario 4 Part Set Costing (with net to cost override)

Scenario 5 Ordering Number Costing (no overrides)

Scenario 6 Ordering Number (with list to cost override)

Scenario 7 Ordering Number (with net to cost override)

Scenario 8 Price Table Costing (no overrides)

Scenario 9 Price Table Costing (with ordering number overrides)

Scenario 10 Model Number Costing (with ordering number overrides)

Scenario 11 Ordering Number Costing with missing ordering number cost

Scenario 12 Part Set Costing with missing product family cache file

38

the application do not have a negative effect in some unforeseen part of the

application. The regression test is maintained by Cognizant testing consultants.

The regression test is mostly automated so that it can be easily re-run with every

new release of the software. The JCHQ application is version of the Job Center

application which is used by hundreds of sales associates every day, so it is very

important to reduce the likelihood of bugs in the application. In addition to

running the regression test, Cognizant also performed black-box testing of the

JCHQ application based on the requirements. They built their own test cases and

then had them reviewed by the author.

An automated test apparatus was also built to test the part cost DLL. This was

required to allow for the maximum amount of test data to be run without user

intervention. The test apparatus was built to run real manufacturing orders

through the part cost DLL, obtaining the calculated cost and also pulling in the

cost calculated by the existing MDP background process. This helped ensure that

the new DLL, which was re-engineered from the MDP background process, was

performing exactly like the source system.

In a similar manner, a semi-automated tool was created to compare the cost of

committed orders, for all costing methods, to the manufacturing cost once the

units were manufactured. The manual part of this test was to analyze each one

that did not fully match. A good reason, such as a design special, was found for

each case in order to prove that the Unit Coster was correctly costing units for all

costing methods.

7.5 Component Testing and System Testing

As each component was developed, it was tested with the gray-box testing. For

the DLLs, prior to the completion of the entire system, testing apparatuses were

created to simulate the calling of the functions. For instance, before the Unit

Coster application was developed, a test apparatus was created to simulate the

39

calling of the cost interface DLL in order to test that component. Prior to

developing the Cost Template Designer, the database tables were set up and could

be updated manually to allow the Unit Coster to run.

Once all the components in the system were developed, the overall unit cost

accuracy was checked. Running the Unit Coster, with all the components in

place, was done to collect test data, which were then compared to known results.

Additionally, via the Cost Detail Review tool, users were asked to help check the

results of the system. They could use the Cost Detail Review tool to verify the

costs of real jobs and orders running through the sales system, well before the cost

data was actually used in any discounting decisions.

40

8. Project Challenges

The challenges on this project were numerous. Fortunately there were no

show-stopper challenges, but there were quite a few obstacles that took additional

time and attention to overcome. One of the challenges faced was the turnover of

consultants. As mentioned earlier in the paper, Cognizant is the main consulting

company that provides IR with development consultants. During the year-long

project, the author dealt with the loss of two very good consultants. The first,

who was extremely knowledgeable about the system, left the project early due to

an expired Visa. The second consult left at the end of 2011 due to a pending

marriage in India. Turnover of consultants takes a great deal of effort to get them

back up to the level of knowledge need to work efficiently.

Another challenge was the lack of strong business leadership. Good projects

require a strong investment of time and interest from the business. It also takes

someone at a high enough level to get participation from all parties. Early in the

project, there was a good business leader, Rick Aldridge, who helped get the

project kicked off. Rick left the company and it wasnôt until later in the project

that a business leader came forward, Dan Wendl, VP of Sales, who was at a level

with enough authority to drive organization alignment. Dan also has a wealth of

Trane sales experience which aided in his leadership effectiveness in this area.

During the in-between period, there was a great deal of conflicting voices with no

single group who could enforce the projectôs direction.

Changing requirements were not a big problem, but as with most projects,

changes are a fact of life. Completing committed order costing was not part of the

original plan, but was added in February 2012. Fortunately this effort was

accomplished without too much additional work, as it was something that was

already planned to be completed eventually. Another change was the inclusion of

the warranty and freight cost calculation and the maintenance screens for the

warranty and freight rate maintenance.

41

The varying manufacturing systems within Trane were also a substantial

challenge. Each location and each product had differences which had to be

accounted for. It took time to understand all the differences and to find the

expertise at each location to help explain the systems. Examples of this were the

three manufacturing systems, several sets of cost data (current, standard, and

planned), and four costing methods. Even within the manufacturing locations that

ran the same version of Cincom, the systems were set up to work differently. For

example within the same Cincom database table, the Rushville locations stores a

single item cost whereas other location store the cost of the entire quantity.

Understanding and overcoming differences like this required several additional

hours of work.

A positive challenge was learning a new programming language, ASP.NET,

and some modern web development techniques. It took a bit of learning [14] and

also collaboration with other groups at IR who were also experimenting with

ASP.NET, but overall the experience was a good one. The skills and techniques

developed can be used on other future projects.

42

9. Continuing Work

Maintaining and adapting the pre-sales costing system will continue into the

future. Now that Trane has this ability, the systemôs data will be incorporated

further into the operations of the company. The cost data and margins will likely

be incorporated into more reports. There is also a potential to use the data to

transform the way the company manages the discounting decisions.

One of the most glaring needs that have not been addressed yet is the need for

dynamic costing of the Lexington performance climate changer product.

Lexington has several customized components to their productôs cost that will be

a challenge to overcome, but the benefit is saving of about 6000 man-hours of

manual work every time it needs to be re-costed, according to the airside product

marketing leader. (Usually the productôs pre-sales costs are updated every couple

of years.)

The same need applies to the La Crosse Centrifugal chiller products. This need

is not as great because La Crosse has a process for updating their pre-sales costs

that is simpler than Lexingtonôs process, but it still does require many hours of

manual work to maintain. The costs for the La Crosse products that are outside of

the MDP part pick process should be easier to account for than the Lexington

product because La Crosse does not have the custom systems that Lexington does.

This will still be a project that will take a good deal of dedicated effort.

The Fort Smith custom products are also not costed by this system. These

products are totally customizable, but they are much lower-volume than the

Lexington or La Crosse products, so this is a low-priority need right now. The

only downside of not having a cost for all products at the time of discounting is

for jobs with several products; they will have an incomplete total cost if just one

of the products is not costed. The product manager for these products had a good

suggestion recently. He suggested allowing a way for the product support team to

43

enter in a cost manually. Because this is manual process it is still not ideal, but it

would provide a way to get a total cost on jobs with these custom products.

Another coming need is to integrate with Ingersoll Randôs future enterprise-

wide back office system. The company is investing heavily in this effort and the

Cincom and UPDS systems are planned to be replaced with an Oracle EBiz

system in each of the manufacturing plants. Although the future system is not yet

designed, this costing system has the potential to easily integrate with that system.

Now that the costing is underway, the costs have begun to be pulled into the

PROS system and used for pricing analytics. Bringing the costs into the Oracle

BI system for other reporting needs will be another area of future work.

44

10. Conclusion

The costing system, designed to work within the Trane sales system, has

automated some of the manual processes in the company. The system can

calculate the cost of nearly all products in a near real time speed. Components of

the system were developed with solid software engineering principles, which

should make future maintenance much easier. The process also provided the

business with a system which matched their expectations. Combining several

software engineering models to fit the needs of the components also proved to be

a real success.

This system was a really good learning experience for how to successfully

create software using several different software engineering models. There were

some real challenges and not everything went exactly according to the plan, but

overall it was a real success. The system should serve as the cornerstone for

future enhancements and transformational changes to the sales organization and to

the discounting process.

45

11. Bibliography

[1] G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modeling Language

User Guide, Addison Wesley Longman, Inc. 1999.

[2] E. Braude, Software Design, John Wiley & Sons, 2004.

[3] M.J. Christensen and R.H. Thayer, The Project Managerôs Guide to

Software Engineeringôs Best Practices, The Institute of Electrical and

Electronics Engineers, Inc., 2001.

[4] Institute of Electrical and Electronics Engineers, Inc., New York, NY, USA.

IEEE Recommended Practice for Software Requirements Specifications,

1998. IEEE Standard 830-1998.

[5] J. Keyes, Software Engineering Handbook, CRC Press LLC, 2003.

[6] C. Lenz, Auto Cost Loader - Software Requirements Specification,

3/3/2012.

[7] C. Lenz, Cost System Architectural Plan, 6/8/2011.

[8] C. Lenz, Cost Detail Review Tool - Software Requirements Specification,

1/10/2011.

[9] C. Lenz, Costing Template Designer - Software Requirements

Specification, 3/3/2012.

[10] C. Lenz, JCHQ Cost Integration - Software Requirements Specification,

2/20/2012.

[11] C. Lenz, Requirements and Design for Cost Cache File Builder, 8/5/2011.

[12] C. Lenz, Unit Coster Application - Software Requirements Specification,

10/6/2011.

[13] C. Lenz, Requirements for Part Cost DLL, 8/24/2011.

[14] Microsoft Corporation. ñIntro to ASP.NET MVC 3 (C#)ò Internet:

http://www.asp.net/mvc/tutorials/getting-started-with-aspnet-

mvc3/cs/intro-to-aspnet-mvc-3, April, 2012.

http://www.asp.net/mvc/tutorials/getting-started-with-aspnet-mvc3/cs/intro-to-aspnet-mvc-3
http://www.asp.net/mvc/tutorials/getting-started-with-aspnet-mvc3/cs/intro-to-aspnet-mvc-3

46

[15] H. Mili, et al, Reuse-Based Software Engineering, John Wiley & Sons,

2002.

[16] R. Patton, Software Testing, Sams Publishing, 2006.

[17] S.L. Pfleeger, Software Engineering Theory and Practice, Prentice-Hall,

Inc., 1998.

47

Appendix A: Cost Detail Review Tool Screens

Cost Detail Review Tool ï Input by Specific Order or Job

48

Cost Detail Review Tool ï Input by Product Family

49

Cost Detail Review Tool ï Input by Product Code

