An Equipment Sales Cost Calculation System

A Manuscript
Submitted to
the Department of Computer Science
and the Faculty of the
University of WisconsifLa Crosse

La CrosseWisconsin

by
Craig K. Lenz

in Partial Fulfilment of the

Requirements for the Degree of

Master of Software Engineering

May, 2012

An Equipment Sales Cost Calculation System

By Craig K. Lenz

We recommend acceptance of this manuscript in paftifllment of this
candidateds requirements for the degree o
Computer Science The candidate has completed the oral examination
requirement of the capstone project for the degree.

Dr. Martin Allen Date
Examination Committee Chairperson

Dr. Thomas Gendreau Date
Examination Committee Member

Dr. Kasi Periyasamy Date
Examination Committee Member

Abstract

Lenz, Cr /i EquipmelitSales @GostCalculaton System |, Master

Software Engineering, May 2012, Allen, Martin.

The availability and quality of product costs prior to manufacturing within the
Trane Commercial Systems business of Ingersoll Rand has always been
inadequate and poor. Of course, navihg accurate costs means ttia gross
margin cannot be accurately calculatgdrossmarginis needed as a component
of discounting decisions and also as a leading indicator of future profitability.
The focus of this project was to create a systesokee that problem.

This manuscript describes the development of a complete cadmtlation
systemdesignedio deliver accurate costs and margin prior to, during, and after
the sale of Trane products. It also describes the software enginpenicigles,
learned in the Master of Software Engineering courses atLUiNat were used
throughout the development cycle. Those principles were used to successfully
achieve the projectodos goal s.

of

Acknowledgements

| want to express my sincere thanks to several people who have helped me with
this project over the last year. First | want to thank Dr. Martin Allen for his time
and guidance on this project. Dr. Allen met with me weekly during his busy
schedule and rég helped keep me on track in order to meet my goal of
completing the project in one year. Dr. Kasi Periyasamy has been such a wise
and helpful professor. | believe he taught 6 out of the 8 classes that | took for the
graduate degree, and they werevally interesting, challenging, and useful in my
work at Ingersoll Rand (IR). UWL is very fortunate to have him leading the
graduate program. | want to thank my manager Brad Goetz at IR for giving me
time, guidance, and funding to see this project thmolagcompletion. Several
colleaguesat IR played a role in this large project too and | want to give my
thanks to them also, Glenn Fernandes, Mike Jefferies, Sume Nagamanickam,
Aarthi VedhavalliGandhi NathanandSundararajaingappan Ingersoll Rand,
in general, is very supportive, both financially and personally. Last | want to give
thanks to my biggest supporters, Jackie, my wife, and my three kids, Abby,
Micah, and Nathan. Jackie has always been very encouraging, understanding, and
patient with allthe time that | have devoted to this project and the Master of
Software Engineering program. My young kids have also been real troopers with
all the time that this has taken my attention away from them.

Table of Contents

N 0] 1= ox AU PP UITTPUPPRR ii
ACKNOWIEAGEMENLS. ...ttt eee e r e e e e e e e e e e s IV
Table Of CONTENTS.......uuiiiiiiiiiiiiiii e %
LISt Of FIQUIES ... ittt e e e e e e ammne s Vi
LISt Of TaDIES .. .ot e e e e e e e e e s s Vil
(€1 (01 1T= T VPP PP PP PP PPPPPPPP IX
1. Background INnfOrmation...............oooeeiiiiiiimemeriiieeeeeee e 1
1.1 State Of COSNG....uuuerieiiiiiiiiiiii ettt 1
1.2 SaleS SYStEM PrOCESS........cuuviuiiiiiie i e et s e e e e e e e e s aneeiaa e 5
2. Project Goal and Overall System Requirementis.............c..eeveevieeenennnee. 8
3. Software Development PrOCESS.......cciiiiiieieeeecceeeiiie e eeen 10
4. High level system architectural plan..............cccccuvvvimmmnniiiiiiiiiieeee, 17
5. Functional REQUIFEMENLS............uuuuuuuiiiii it e e e e s eeeniene e 19
5.1 Cost Cache File BUIIder........ccoooviiiiiiiiiiiiieeee e 19
5.2 PArt COSEDLL ...t e 20
5.3 CostInterface DLL........ccoooiiiiiiiiiiiiieeee e 21
5.4 UNIt COSEOE..ciiiiiiiiie e 22
5.5 Cost Template DeSIGNEL.......cccuuuuuuiiiiiiiiiieeeiiiiiiiieeeee e e eeeeeeees 23
56 JCHQANA UPS......cooiiiiiiiiiii e 24
5.7 Cost Deail Review TOOl (CDRT).....coooiiiiiiiiiiiieieieeeiieveeeeeee 25
5.8 Automated Cost Loading............oovvvviiiiiiiiiccreeeeeieiceee e e 26
5.9 Miscellaneous MaintenanCe SCreeNS.uvvvviviiiiiieeeiieeeiiieeeeenns 27
6. Design and Programming........ccccceeeeeeeeiiiiieeeiiiee e eeeeeeeeeeeeeeeene e 28
6.1 User Interface Screen DeSIgQNS.......cccuvveeeiiiiiiiiccceeee e 28
6.2 Architectural DeSIgN........ccooeeiiiiiiiiiiieeee e 28
6.3 Database DeSIgN........ciiiiiiiiiiiii e 29
6.4 Progamming LAnQUAQJES...........ccuuuruuuuuuuicmeeeernrinniinaaeeeeeeeeamenannns 32
6.5 Data Setup & ANAIYSIS........ooooiiiiiiiiieee e 33
7. Validation and TeSHNG.........ooviiiiiiiiiiimr e 35
7.1 COUE REVIEWS.....oiiiiii e eeeeeeeeeeeeee et mmme e e e e eeeaeeennnnes 35
A A C 1>\ Y 0 10) q (=3 1] o PP 36
7.3 Usability TESHNG.....cccoeiiiiiiiiiiieeee e 37
7.4 Regression Testing and Automation..............ceuvveeeieeeereeeeeeeinnnnn. 37
7.5 Component Testing and System TestNg............eeveeeeiviieeevvreeeeenn. 38
8. Project Challenges........cccooeeeiiiiiiiiiiceeii e eeennn . A0
9. ContiNUING WOTK.....ccoiiiiiiiiiiiiii e 42
10, CONCIUSION ...ttt en 44
(S =11 o] oo =T 0} V2R PP PP PPPPPPPPPPTPPP 45

\Y

Appendix A: Cost Detail Review ToOl SCreens.............cuuvveeeevieencivvvninnnnnne. 47

Appendix B: Cost Template Designer SCreens...........uueeeeeriieccrvevrnennnnnnnnns 51
Appendix C: Job Center HQPrice Rollup Screen...........ccocvvvvvviiieccennnee, 54
Appendix D: Ordering Nbr Assoc. Maintenance SCreen.........cccceeeeeeeeeenes 55
Appendix E: Cost Rate Maintenance SCreeM...........ccvvviiieiieeeeiiiiieiaeaeeeeenn 56

Vi

List of Figures

Figure Page
Figure 1- Sales System Diagram (prior to the completion of this project)....7
Figure 2- General outline of software-sengineering process...........ccccc....... 11
Figure 3- The Waterfall Software ProCess.............uuuvuiiiiiiccceeeeiviiiiiineeennn 12
Figure 4- The Prototyping Model...........cccooiiiiiiiiiiieee e 13
Figure 5- Functional Requirement for MonitorSelectionQueue function.....14
Figure 6- Architectural Diagram of the Costing System.............ccccccceeiceee. 18
Figure 7- Partial class diagraml............cooouuiiiiiimmmniiiiiii e 29
Figure 8- Partial ER Diagram of sales system DB...............ccoovvvvieeeeeenennn. 31
Figure 9- Model View Control Framework.............ccccccuiiiiimemnnniiiiinneee 32

vii

List of Tables

Table Page
Table 1- Example price table for motor horsepower option.............cc.cce..... 2
Table 2- Example Price Table for Sensor Accessory (Ordering Number Bazed)
Table 3- Example part rules for a motor part type..........cooovvvvviiviieenn e, 3
Table 4- Test Case of Various Costing Method Scenarios.............cccccou... 36
Table 5- Test Case Scenarios Relating to Tezs€in Table 4...................... 37

viii

Glossary

Backlog
A collection of allproducs not yet manufactured, but customer commitment to
purchasehose producthas been received.

BOM
Abbreviation forbill of materials. It isa list of the raw materials, stdssemblies,
intermediate assemblies, sabmponents, components, parts and the quantities of

each needed to manufacture an end product.

Cincom

One of the manufacturing systemsed in Trane. Made lyincom Systems, Inc.

Cognizant
Consulting company contracted by IR to fulfill IT consulting service needs

COJO or Coordinated Jobs
Team of people who perform job coordination (or discogptinnctions with IR.

Configuration or Configured Product
Same definition aselection It is a variation of a product after the sales associate

has picked all the options desired. A selection belongs to a Job.

Cost Template

The costtemplate is the attributesetper product family used incalculation of
costs of aselections from those product families. An application called the Cost
Template Designer will be used to create and edit these templates.

iX

Design Special

A design speciais a special option that is not offered via a standard
configuration. A sales associaan request these from the manufacturing
location. The manufacturing location determines design costs and charges and

provides the special pricing authorization ASPBack to the sales associate.

DLL
Abbreviation for dynamic link librarylt referstoMi cr osoft s | mpl ement ¢
the concept of a shared library, which is a library that can be shared by multiple

programs throughout the operating system.

ESTRNP
The production enterprise database. The FOE application transmits order data to
this database when an order is committed. Several other applications, like

KODIAK & MDP also run against this database in the order fulfillment process.

FOE
Abbreviation for Feld Order Entry. This is an application used by Traaless

associates that allovisem to create and edit orders.

Gross Margin (or Margin)
The difference betweerevenueand cost before accounting for certain other
costs. Generally, it is calculated as the selling price of an item, less the cost of

goods sold

HVAC
Abbreviation for Heating Ventilating and Air Conditiing. HVACrefers tothe

technology of indoor and automotive environmental comfort

http://en.wikipedia.org/wiki/Revenue
http://en.wikipedia.org/wiki/Cost

IR
Abbreviation for Ingersoll Rand. IR is the parent company of Trane. IR is the

sponsor of this project.

Job
A job is a collection of configured products for a dpdci ¢ cust omer 6s nee:¢

job also contains many attributes such as location of building, customer name, etc.

Job Center
An application used byfrane sales associates that allowsem to manage

equipment jobs, including configuring and pricing products.

Job Center HQ

A special version othe Job Centeapplication used by the coordinated jobs

department for viewing jobs and managing the discounts given on jobs in the
guoting phase of the project. JCHQ is anc

name.

MDP

Abbreviation for manufacturing data peggtion This is an application that
serves as a linkage between the fremtl sales systems and bastdmfg systems
performing some order fulfillment functions. Part pick and validation rules are

set up in tle system for use in validating selections and determining the BOM.

MDP background process

Applications that are outside of tMDP application, but triggered by changes
made within MDP. These background processes perform operations like
selection validabn and part picking.

Xi

Oracle Bl or OBI

Abbreviation for Oracle Business Intelligence. Q@B& complete, open, and
architecturally unified business intelligence solution for the enterprise that
delivers capabilities for reporting, ad hoc query and arsalys

Order
An entity which ties the configured products to be purchased together along with
other information such as estimated ship date, ship address, etc.

Price Table
A product family can have several price tables, one for each category. A price
tablecontains rules which relate to selected options. Each rule can have a list $,

net $, and a cost associated with it.

Part Pick Rule

Within theMDP application, a part pick rule can be configured for a product.
The part pick rule relates selected optiaiith a particular part, which is one
element of the BOM.

Re-engineering
The modification of a software system that takes place after it has been reverse

engineered, generally to add new functionality, or to correct errors.
Selection

A variation of a prduct after the sales associate has picked all the options

desired. A selection belongs to a Job.

Xii

SOTRNP
The production coordinated jobs database. The JCHQ application runs against

this database in the coordinated jobs process.

Testing

A type ofvalidation applied to source code.

TOPSSE
Abbreviation forTrane Official Product Selection Systertt is an application
used by Trane sales associates that allows thesglect and predict performance

of Trane products operating under various condstion

UPDS
Abbreviation for unitary product distribution system. It is used in the unitary
products division of Trane. It handles all the manufacturing system functions for

that business. It is an internally developed application.

UPS
Abbreviation for uitary pricing system. This is an application used for

coordination of the unitary light commercial products.

Validation
A process that confirms that the product (or partial product) meets the

expectations.

Verification

A process that confirms a developnt process or activity or task to be correct.

Xiii

1. Background Information

The Trane Commercial Systems business of Ingersoll Rand produces and sells
a large range of products for the HVAC market. Most of these products are
engineered to ordeiThis means thahe product requestesl built specifically for
the job based ontheust omer 6s requirements. Wit h th
businessit is not easy to know the cost of the equipment prior to manufacturing.
For some models of producthere are literally trillions of ways that a product
could be configured. Becauseof the huge number of combinations, it is not
practical to build or maintainoss for all potentialvariations of a productPrior
to the completion of this projectpstswerenot easily known at the time that list
priceswere set. Additionally, costsvere not known at the time that discounts
wererequested foa job or at the time that the equipmer@sordered. lwasnot
until the equipmentwas manufactured that the cost calculatiwas done within

each | ocationds manufacturing system.

1.1 State d Costing

Two methods have been used for-pades cost calculation of configured
selections. One method employ@ & o st ¢ opracassyhich imvolves re@
entering the configuration ahe productin a separate system from the sales
application. The reentered configurationis then costed the process of
calculating the costin an overnight background processlled the MDP
background processThis cost control uniprocesss error prone due to the+e
enteing of the configuration, and it iBme consuming because someanest
manually reenter the configuration. I also slowdue to the need tevait until
the next day to find the result.

The second method that has been used is to determine a cost for each option

level price rule. Pricingsimaintained at the option level with configuration rules.

Net

BASEUNIT/MTHP |BASEUNIT/UNVT List Price Price | Std Cost

Mot Set Any $0.000000 $0.000000
1/3 Horsepower 2-Speed 115/60/1 5382 758300 587163200
1/3 Horsepower 115/60/1 OR 208/60/1 OR 230/60/1 $261.679500 360.466600
1/3 Horsepower 277/60M $284.745000 $65.796400
1/3 Horsepower 220/50/1 OR. 240/50/1 $322 678300 $74.561700
1/3 Horsepower 190/50/3 OR 380/50/3 OR 415/50/3 $364.355900 $84.192200
1/2 Horsepower 2-Speed 115/60M1 $483.737200 $121.430600
1/2 Horsepower 115/60/1 OR 208/60/1 OR 230/60/1 $280.857300 $64.905000
1/2 Horsepower 2777601 $322 678300 $74.561700
1/2 Horsepower 208/60/3 OR. 230/60/3 OR 460/60/3 $364.355900 $84.192200
1/2 Horsepower 220/50/1 OR. 240/50/1 3435579900 $100.650000
1/2 Horsepower 190/50/3 OR 380/50/3 OR 415/50/3 $395.112700 $91.299200
3/4 Horsepower 2-Speed 115/60M1 $702.858400 $162.410400
3/4 Horsepower 115/60/1 OR 208/60/1 OR 230/60/1 $397.786300 $91.917000
3/4 Horsepower 277601 $391.011800 $90.351600
3/4 Horsepower 208/60/3 OR. 230/60/3 OR 460/60/3 $395.112700 $91.299200
3/4 Horsepower 575/60/3 3401.798900 $92.844200
3/4 Horsepower 220/50/1 OR. 240/50/1 $493.224400 $113.970000
3/4 Horsepower 190/60/3 OR 380/50/3 OR. 415/50/3 3439.821500 3101.630100
1 Horsepower 2-Speed 115/60M $980.516000 $226.569100
1 Horsepower 115/60/1 OR 208/60/1 OR 230/60/1 $399.054300 392210000
1 Horsepower 277/60M $418.782000 $96.768500
1 Horsepower 208/60/3 OF. 230/60/3 OR 460/60/3 3439.821500 3101.630100
1 Horsepower 575/60/3 $399.971400 $92.421300
1 Horsepower 220/50/1 OR. 240/50/1 $667.510400 $154 242500
1 Horsepower 190/50/3 OR 380/50/3 OR 415/50/3 $476.595800 $110.127600

Tablel - Example price table fanotor horsepowesption

Ordering

ACCY/SENS Number List Price

Without zone sensor $0.000000
Room sensor w/override button BAYSENS573A | $100.000000
Room sensor w/temp adj. and override BAYSENS574A | $117.000000
Single set pt manual changeover sensor BAYSENSG606A $96.000000
Dual setpoint changeover sensor BAYSENS608A | $156.000000
Dual setpoint w/system lights sensor BAYSENS610A | $328.000000
Programmable sensor w/night setback BAYSENS619A | $511.000000
Digital display zone sensor BAYSENS635A | $190.000000
Digital Display Wireless Zone Sensor BAYSENS550A | $352.000000

Table2 - Example Price Table for Sensor Accessory (Ordering Number Based)

BOM (PART

RULE BASEUNIT/MTHP |BASEUNIT/UNVT QrY |MBR COST

MTHP/1&UNVT/ A 1/3 Horsepower 1158/60/1 1|V1069 573.8407
MTHP/2&UNVT/A 1/2 Horsepower 115/60/1 1|v1070 579.2791
MTHP/3&UNVT/ A 3/4 Horsepower 115/60/1 1v1071 §112.1773
MTHP /A8 UNVT/A 1 Horsepower 115/60/1 1|v1072 | 5111.7653
MTHP/1&UNVT/E,C 1/3 Horsepower 208/80/1 OR 230/60/1 11V1073 572.5738
MTHP/ 28 UNVT/B,C 1/2 Horsepower 208/80/1 OR 230/60/1 1vV1074 577.8630
MTHP/3&UNVT/B,C |3/4 Horsepower 208/60/1 OR 230/60/1 1{vV1075 5110.4057
MTHP/4&UNVT/EB,C 1 Horsepower 208/80/1 OR 230/60/1 1|1vV1076 5111.5181
MTHP/1&UNVT/D 1/3 Horsepower 277/80/1 1V1077 579.6499
MTHP/ L& UNVT/1,K 1/3 Horsepower 220/50/1 OR 240/50/1 11WV1078 590.2692
MTHP/2&UNVT/D 1/2 Horsepower 277/80/1 11V1078 590.2692
MTHP/ 28 UMNVT/K 1/2 Horsepower 2407501 1{v1079 5109.3860
MTHP/3&UNVT/D 3/4 Horsepower 277/80/1 11vV1079 5109.3860
MTHP/3&UMNVT/K 3/4 Horsepower | 240/50/1 1|vi080 | 5117.1625
MTHP/A4&UNVT/D 1 Horsepower 277/60/1 1|WV1080 5117.1625
MTHP/2&UNVT/E,F 1/2 Horsepower 208/80/3 OR 230/60/3 1v1081 5101.9494
MTHP/1E&UNVT/N 1/3 Horsepower 190/50/3 1|WV1081 | 5101.9494
MTHP/3&UNVT/E,F 3/4 Horsepower 208/80/3 OR 230/60/3 1|vV1082 5110.5396
MTHP/ 28 UNVT/N 1/2 Horsepower 190/50/3 1WV1082 5110.5396
MTHP/4&UNVT/E,F 1 Horsepower 208/60/3 OR 230/60/3 1|WV1083 5123.0438
MTHP/3&UNVT/N 3/4 Horsepower 190/50/3 11WV1083 5123.0438
MTHP/4&UMNVT/N 1 Horsepower 190/50/3 1vV1084 5125.5570
MTHP/3&UNVT/H 3/4 Horsepower 575/60/3 1|1WV1087 5112.3833
MTHP/4&UNVT/H 1 Horsepower 575/60/3 11vV1088 5111.8889
MTHE/ 28 UNVT/] 1/2 Horsepower 220/50/1 1{W1093 5134.3429
MTHP/3&UNVT/] 3/4 Horsepower 220/50/1 1|v1094 5158.8260
MTHP /48 UMNVT/1,K 1 Horsepower 220/50/1 OR 240/50/1 1vV1095 5186.7390
MTHP/1&UNVT/LM [1/3 Horsepower 380/50/3 OR 415/50/3 1|v1099 5101.9494
MTHP/2&UNVT/G 1/2 Horsepower 460/60/3 1|v1099 5101.9494
MTHP/28&UNVT/LM |1/2 Horsepower 380/50/3 OR 415/50/3 1|v1100 | 5110.5396
MTHP/3&UNVT/G 3/4 Horsepower A60/60/3 1vV1100 5110.5396
MTHP/3&UNVT/LM |3/4 Horsepower 380/50/3 OR 415/50/3 1/V1101 | 5123.0438
MTHP/A&UNVT/G 1 Horsepower 460/60/3 1|v1101 | 5123.0438
MTHP/4&UNVT/LM |1 Horsepower 380/50/3 OR 415/50/3 1)v1102 5125.5570
MTHP/3&UNVT/P 3/4 Horsepower 2-Speed 115/60/1 1|V1105 | 5196.6270
MTHP/A&UNVT/P 1 Horsepower 2-Speed 115/60/1 1|V1106 | 5274.3096

Table3 - Example part rulefor a motorpart type

Table1 and Table Zhow examples of what a price table might look like. Each
row of the price table is called a price rule. Table 1 is a price table on the motor
horsepower (MTHP) category. This price table has 2 factors, motor horse power
(MTHP) and unit voltage (UNVT). Based on the options within those two
categories, the price is set. What this means, for example, is that if the sales

person specified this product with a ¥2 horsepower motor running on 208 volts, 60

3

hertz, single phase power, then the list price is B0Table 2 is an example of

a price table that directly relates the price rulesuaique ordering number. This

price table only has one factor, which is the type of sensor (SENS) picked. In this
exampl eDualf ddtepdi nt waspEckeg with this prodesce nsor 0
order i n g AnYuSntbNeSr6 OB A0 woul d be cholsen with a
Table 3 an example of a set of part pick rules is shown. In this exathelgart

pick rules are all for a motor part relating to the same produthéoprice table in

Table 1. In this case theredgistsa relationship between the price table in Table

1 and the part pick rules in Table 3, since both have the same factors. This is
normally not the case. This makes relating the parts and asdoc@de very

difficult and labor intensive. Additionally, because the costs are difficult to
capture, the cost data can get stale and therefore becomes invalid. To capture the
cost at the option level, many cost control orders are created to try to ideterm

the costs for the options. This is not an exact science and takes quite a bit of
analysis to figure out how to extract the option cost out of the total tadtould

also be noted thahe cost is determined based on parts, like screws, and the
prices are based on options, like unit size. As a result, making the price and cost

align is pretty difficult.

Other factors contributing to the difficulty in obtaining costs are related to
differences in how the products are manufactured and set up fa; sale
differences in the manufacturing systems. Although the products manufactured
by Trane are for the same industry, HVAC, that does not mean the products are
similar. Trane manufactures everything from small variable air volume (VAV)
unitsallthewst t o | arge CentravacE Chillers. The
probably the modular climate changer products. There are also electronic controls
products and other aftermarket products, like rebuild Kiise wide variation in
products supported by thesystem,adds to the complexity in costing, because
each different type of product has different costing needs. The manufacturing

locations spread out throughout the country also have different manufacturing

systems and different means of handling cost @eadgin. For example, the
unitary light commercial products out of Clarksville and Lynn Haven have an
entirely different kind of manufacturing systems than the rest of the locations.
Those locations also calculate their margin a bit differently tharr éibations.
They include outbound freight cost and warranty reserve costs in thesalpse

margins, whereas other locations do not.

1.2 Sales System Process

Before the sales process starts, t he
setup inclués determining what options are to be offered and what the pricing for
the options will be. On the manufacturing system end, BOM rules are created and
costs are assigned for the parts. During the sales process, the product options are
chosen within theab Center or TOPSS application. Once all the options are
picked, a list price can be determined for the configured unit, also referred to as a
selection. Sales associates have the ability within the sales system to discount the
list price to a certain i&l. Beyond that level, the sales associate must escalate
the job for discounting, also referred to as coordination. The coordination team
can authorize and assign discounts, or they can escalate for an upper management
decisi on. F o | & deeisiomtg actept the affer,ghie ordeeentérs a
committed status and is transmitted by the FOE application back to the enterprise
database. This also puts the order in a queue for manufacturing based on the
entered ship date. When the manufacturirgtion is ready to build the unit, the
order is run through the MDP application to complete the BOM, resulting in a
serial number assignment, among other things. The Cincom or UPDS
manufacturing system picks up the BOM information from MDP and carries the
unit through its system. Following shipmetite financial system picks up the

information includingthe salegrice and costand determinegrossmargin.

pr oc

In terms of applications and databases, the diagram in Figure 1 shows the
various systems involved in the sales process. The initial product and pricing data
setup mentioned above is performed by the data maintenance applications running
against the Oraelenterprise databases (ESTRNP). A monthly replication of the
product and pricing data from ESTRNP to a Sybase master occurs. The Sybase
master data is then pushed into each of the Sybase sales office databases. The
data associated with the salesassdcie 6 s conf i guration i s store
Sybase database. When the sales associate requests a coordination to occur for
di scounting, the sales associateds job dat
coordinated jobs database. A special headeguaersion of Job Center, called
Job Center HQ is used to complete the coordination. For jobs with only unitary
light commercial products, another application, called UPS, is also used for
coordination. Authorization of discounts is then passed badketcenterprise
database so that if and when the order is committed, a validation of discounts can
be done. Once the job is accepted by the customer, an order is created in FOE
and the committed order data is then passed to the ESTRNP database. From that
point the order is processed by the Kodiak, MDP and Cincom applications or
Kodiak and UPDS applications (for unitary light commercial products). For the
Cincom portion, some data is fed into the Cincom database. The financial system
runs on its own dabmse, FSTRNP, and pulls in pricing and cost from the
ESTRNP and Cincom databases.

Aﬁ:i.ﬂn units on jobs

Amw.i..:-_!-nnﬂi

Sales
Associate

Commuynjications

Product Management
Or Upper Management

Coordinated
Jobs DB

Monthly Produd,

pricing replication

Enterprise
DB

Host
Coster

=)

Product
Support

e

Order Support

Mfg
System
DBs

Figurel - Sales System Diagram (prior to the completion of this project)

2. Project Goal and Overall System Requirements

The goal of this projeas to provide a complete unit cost for all products at any
point after the configuration of a unit is complete. This cost will be determined
based on the configuration and will not requirengry of the configuration, as
has been the case for cost cohtmit process. It should also be calculated in
reaktime or near reafime, on demand. The cost calculation should be initiated at
the time of discounting based on the configuration stored in the coordinated jobs
database, when a sales associate sglihetjob for coordination. These costs
will feed an application called Job Center HQ that allows headquarters
coordination staff to see the complete job, the cost, list price, sales price and
margin. The cost calculation should also be initiated latére cycle at the time
the order is committedased on the configuration stored in the enterprise
database. Both costs for job coordination and costs for committed orders will
feed a pricing analytics tool called PROs. Additionally, the costs will iitbava
data warehouse for backlog reporting (i.e. reports on equipment not yet

manufactured) via Oracle BI.

A secondary goal is to be able to preload ordering number costing into the
enterprise database and associated price tables so that the costiadnie avghe
time that the list prices are set for those items. This is an important goal because
it establishes the relationship early on and thus avoids running into missing
ordering number, and therefore missing cost, when a configured unit is infneed
costing. Most of the time an ordering number will represent a complete accessory
item which is sold with a configured product. Other times an ordering number
can represent a complete Abuilt to stockbo

These system requirements weredeeeped based on the company
expressedby Rick Aldridge who realized all these gaps in the current system.

All of the requirements were to be satisfied within the context of the existing

system, as described in section 1. A means of settiagcopting template for

each product was needed, as was functionality for taking a configured job and

producing a cost. Modification to the Job Center HQ application was needed to

pull in the new costs and calculate and display the margin. A means lafyohigp

the cost details was needed for investigation of cdatsictionality for automated

cost loading was also required. All of these business requirements have been
factored into the systemds architectur al

functional requirements, described in section 5.

d

3. Software Development Process

When taking on any large projettalways seems to work best to break the
overall project down into parts. With this project, the first step that the author
took was to break theverall project into three categories. At the core of the
project there needed to be the functionality to be able to cost a selection at any
point in the sales process. So the costing functionality was one of the three main
categories. Prior to casy a selection the costing functionality needed to have
some information to drive it. The maintenance system, providing attributes onto
the products, was the second category of the project. The third category of the
project was the functionality to disgléghe costs and use those cost for margin
calculations.

From thesehree categories a high level architectural plan was developed to
describe the components neeaethin each of the three categories. Within the
costing functionality category, the maiomponents needed wefe the Unit
Coster, which was to run 24x7 costing selections as neg2jlée: part costing
DLL and cost interface DLL were two other key components needed to cost
selections based on the type of costing neealed3) he cost cachgle builder
was needed to routinely build cache fitesthe part costing DLL to use

Within the second category of the project was the cost template designer
application which allowed users to set the cost attributes for each product.
Additionally, cost rate maintenance and ordering number cost relationships
maintenance were needed to provide rate data and ordering number relationships.

Within the third category of the project, the JCHQ and UPS application
changes were required to view costs ealdulate margin. The cost detail review
tool was another component in this category, designed for display of the cost
breakdown for a selection. The third component within the third category is the
use of the cost data in pricing analytics, via PROd,imameporting, via Oracle BI.

1C

After the highlevel architectural design was completed, each one of the
components of the systawasdeveloped one at a time. Although the
components were interrelated, a sequenced development order of components was
determned, so that each could be developed in a somewhat independent manner.
This helped break the large effort down into manageable sized chunks. It also
allowed for small successes and useable pieces, on the road to developing the
entire system [3].

It took a fewdifferent software engineering models to develop each of the
components.The initial development was focused on th@ngineering of the
existing part pick functionality, known as the MDP background process, which
was written in Unix C to run othe database server. This effort to build the Part
Cost DLL did truly follow a traditional rengineering processlhe goals of this
effort were 1) to get the costing to run on a Microsoft Windows servetp2)in
against the VPFC/VPC/SI data as ommbto FCAT/FCODE data, 3) to run
discounted from the database for the part pick rule processing, and 4) to include
anassociation from parts to their cost so that total unit cost could be calculated.

Existing
Software
Engineering

l

Understanding
and
Transforming

Re-engineered
System

Figure2 - General outline of software-engineering process
(Based on [page219 exhibit 154)

e

11

The diagram in Figure 2 shows a general outline of the softwamegieeering
process [5]. Rengineering starts with an existing systeddnderstanding of the
existing functionalities and structure and transforming them into new stracture
the key parts. In this case, the MDP background process was the existing system
that had to be understood. This code is massive and literally hundreds of
functions werenvolved in the reengineering process. There was no
documentation for these functions outside of the comments embedded in the
source codehereforethe source code served as the main basis for understanding
the existing requirements. Another aid in ersfanding the functions was the
data which has been set up for the part pick and validation rules for each product.
There was documentation on the various rule formats and that did serve as a
beneficial resource. The last source of knowledge on thengxgs/stem was the
output data.Having the input and output data for the existing functionality also
served as a great means to test the resulting Part Cost DLL and verify that its

results were equal to the existing MDP background process.

v

: : 1T T T 1T 1T 1T T 1T 1T 1T 1T T T/
| |
: Mﬂesrone(s):
| |

T T 1 T 1T 17 1T 1

[| T I I |

| | | L T
bbb Release product X
| I | I T O O

|
| O T I N IIIIIIIIIIIIIII:
| N [[Y [Y O R O O O A A O O
| Requirements | {411 b 1| Two phases may occur
| Analysis [T T O I O O at the same time for a
o e e [N A N T A O Y O A O P, o B .
Db bbb a1 A1 1 1 shorperiod
[I Y R O O IR B . I O e 1 I T T T T T
[I Y O O IR B DEQQH [| | I Y Y (Y A A R I O A
T O T I A — T O O Y I
||||||||||||||L||-'\.|||||||||||||||||||
[A A N N Y (A AN Y [(A N (N e N A R [(Y (Y Y O (N |
et Implementation I T T Y O (O
| N I N A Y I T I I O N | [T N Y Y N AR B B |
rFr o rrrrrrrrrerrnrnrnrnrnrrnrnni
BEEEEEEEN Testng 1101
Phases (activities) _—

11 11 L1
| (| T
11 11 L1001
11 1o LT 10011 Maint
o 1o R T N aintenance
Iond Il [T I R A
Ionod Il I T T I A
I I I I | | | | I | I I I I

Figure3 - The Waterfall Software Process
(Based on [P page2, figure 0.3

12

For many of the components of this system, the traditional waterfall model was
used. The waterfall model works great for applications or functionality which do
not have a user interface. In this system, the waterfall model, as shown in Figure
3 [2], wasused for: 1) the Cost Cache File Builder, 2) the Cost Interface DLL, 3)
the Unit Coster, and 4) thieutomated Cost Loadinfyinctionality. Each of these
components asdeveloped independently its own waterfall process and linked
into the system aswas completed. As described in section 5, the functional
requirements, developed by the author, were completed and reviewed with the
sponsors. The design, as described in section 6, was also completed by the
author. For most of the components, the prognarg was completed by an
intern or Cognizant consultant. The code was reviewed by the author during the
development and after completion prior to testing. Testing, as detailed in section
7, was also mainly completed by the author. In one case an aetbiresit suite
was used, managed by a separate Cognizant testing team. Following deployment,
as with many new systems, some maintenance work was also required to work out

a few unplanned issues.

)
List of List of List of
. < - - - € ——= .
Revision Revision Revision
\ J \ J /
A A A
h 4
Prototype - Prototype " Prototype - Test
‘ Requirements - Design - System - |
System Requirements Delivered
(sometimes informal or System

incomplete)

Figure4 - The Prototyping Model
(Based on [1]f page53, figure 2.5

13

The prototyping model [17], shown in Figure 4, was used for several
components of the system where a graphical user interface was required. Those
components included: 1) the cost template designer, 2) JCHQ & UBf®, Gpst
detail review tool, and 4) the cost rate maintenance and ordering number cost
relationships maintenance screens. The prototyping model was ideal for these
components because they required a fair amount of interaction with the users who
had a hat time articulating the requirements. Once the users could see and
interact with the prototype, then the specific requirements of how they would

interact with the Ul, and what data they needed to see, came to light.

MName: MonitorSelectionCueue

Purpose: Check selection gueue for selections that need to be costed and call the correct costing
method

Inputf parametfers: Mone

Action: Fetrieve |ID of next selection in the queue to be processed
Check selection for validity (has coarespanding selection recard, has product family
template)

Fetrieve Cost_Method of the selection’s praduct family's template
If Cost_Method is Part Costing then
Inwvaoke CostSelectionvViaFPartCostMethod passing the selection 1D
Else if Cost_Method is Price Tahle then
Inwvake CostSelectionViaPriceTahleM ethod passing the selection D
Else if Cost Method is Ordering Number then
Inwvaoke CostSelectionViaQrderingMumberCostingM ethod passing the selection 1D
If successful
Add informational record to feedback (process time, selection_id, process data)
Femave the selection fram the queue
Elze
Add informational record to feedback
Increment failure count on gqueue tahle
Dutput parameters: Mone
Excepiions: cooresponding selection record is missing
product family template not defined
no selections in queue
Database connection problem
Remarks: Nane
Back References!

Figure5 - Furctional Requirement foMonitorSelectionQueutinction
(from [12], pageb)

Within the waterfall or prototyping models, functional requirements were
written for the components of tisgstem §,8-13] by the author. The IEEE
Standard 831998 for writing ®ftware requirement specifications] [was
followed for these documents. The requirements for each of these components
will be described further in section 5, but listed in Figure 5 is an example of a
requirement written for thlonitorSelectionQueutinction of the Unit Coster

14

[12]. This is a functional requirement written for the monitoring of the selection
gueue and the response taken if a selection exists.
The design phase of the processes mainly followed the UML design standards.
The best quote tepresent the place of UML in the development process comes
from The Unified Modeling Language UserGuidd Thi ngs t hat are best
expressed graphically are done so graphically in UML, whereas things that are
best expressed textually are done in the p
included some use case diagrams, class diagram, and ER diagrams in this project.
The author took the functional requirements and developed those UML diagrams.
Because of the lack of one clear functional expert in this area, and uncertainty
from business sponsors, some of the requirements were revisited and revised after
the developmet or testing had started. There was nothing that required an
overhaul, it was jughinor enhancements and fine tuning of the requirements that
occurred to exactly meet the needs that arose. For example it was assatmed th
ordering number would onlyppear in one price table, atlterefore only appear
once within a selection. Al t hough it does
contrary were discovered after running tens of thousands of configurations
through the costing functionality. A correctito the functionality had to be
made to account for duplicate ordering numbers in a selection.
After the design was completed, either an intern or Cognizant consultant took
the design and requirements and used them to do the programming needed.
Throughot the coding and after the completion of the coding, the author
completed code reviews to make sure that good programming practices were
followed and that the design was interpreted correctly. Additionally the code
reviews served as a basis for gray besting.
Testing and deployment were the final pieces. These were also completed by
the author. Testing involved white box, black box, and gray box testing. Unit
testing of the functions occurred to ensure their accuracy. Gray box testing

involved testing the components based on knowledge of how the code was put

15

together. Black box testing was performed on some components using an
automated test suite in some camedmanual testing in others. Black box testing
was performed by a separate Cognizanetigpment team using the requirements

as a basis for what needed to be tested. Additionally some components were put
through a semautomated test by the author to test the resulting costs against

known cost results from the manufacturing systems.

16

4. High level system architectural plan

Given the fact that the existing Trane sales and manufacturing system needed
to stay intact, the architecture of the costing system exg&ctedto revolve
around that existing system without disturbing it too much. Aacidltily, in order
to accomplish the goals of this project, it seemed like breaking the needs down
into components of the system would help break the daunting task into several
smaller projects which could be accomplished. Creating a componentized system

would also add to future reusability.

From the existing sales and manufacturing system, shown in Figure 2, the high
level architectural plan was formed which would shape the direction of the
project. The result of this planning stage was a diagram ofthiogs would fit
together inside of the existing Trane sales and manufacturing system, and a
document describing the purpose of each of the components [7]. That resulting

diagram is shown in Figure 6.

As described in section 3, there were three categofiaseds that were taken
into account: 1) maintenance components to maintain data supplied to the costing
functionality, 2) the costing components, and 3) components to view or use the
cost data. The design of the costing system takes into accountdtegeries of
components. Within the maintenance components, there is: 1) the cost template
designer application, which allowed users to set the cost attributes for each
product, and 2) the cost rate maintenance and ordering number cost relationships
maintenance components, which were needed to provide the rate data and
ordering number relationships. The costing components needed werelUhjtthe
Coster applicationywhich was to run 24x7, costing selections as needed, 2) the
part costing DLL for costingroducts set up for part costing, 3) the cost interface
DLL, which was to cost products having all other costing methods, and 4) the cost
cache file builder, which was needed to routinely build cache files for the part

costing DLL. Within the category @omponents to view or use the cost data, the

17

following were needed: 1) changes to the JCHQ and UPS applications to view

costs and calculate margin for the coordinated jobs process, 2) design of the cost

detail review tool for display of the cost breakdovam a selection, and 3) a

means of feeding the cost data to the PROS pricing analytics tool, and to the data
warehouse for use in Oracle Bl reports.

Yellow — indicates new componeants |

Blue - Existing components that will be modified
| to accommaodate the new costing system |
White — Existing components not affected

Figure6 - Architectural Diagram of the Costing System

18

Sales Systems Order Mig Systems
(Jub Center! a?ﬁé‘é‘;w Fulfillment MOP (Cincom)
TOPSS) (Kodiak) One for each
location
50 - Syllase DBs
Praduct, Pricing,
Cost, etc. Data
Maintenance
Systems ESTRNP Mfg System DBs
Product Cost
Template Designer Cost Cache File
Builder
Cost Detail Review
Tool)
UPs e Cost DIl Testing Auto Costing
Apparatus Loader
JCHO SOTRNP
Host Coster R
Part Cost D T
Y / ‘—‘[1
Unit Costar = Cosl Interface DLL Cost Cache Files
Color Key:

5. Functional Requirements

Functional requirements were identified for each component of the system.
Software requirement specifications were written for each component based on
the IEEE Standard 83D998 for writing softwee requirement specifications][4
A brief summary ofhie functional requirements for each component is explained

in a subsection below.

5.1 Cost Cache File Builder

The functional requirements for the cache file builder were developed in
tandem with the functional requirements for the Part Cost DLL. The colsé ca
file is a component needed to build cache files on a nightly basis to hold all of the
part pick rules, product data, and part costs needed by the Part Cost DLL to cost a
selection without going to the database. The requirement to use cache files was
not a business decision but a design decision based on the fact that the cache files
could be formatted and presented in a way that would make the Part Cost DLL
more efficient. The Part Cost DLL will need to cost a selection as quickly as
possible and usgcache files allows us to speed up the process. A second reason
for using a cache file was that the manufacturing system databases were known to
have frequent outages; putting the part costs into cache files eliminated the
possibility of the database @gfe interrupting the costing operation.

The functional requirements fdlnis component1l] includedretrieving data
from the database in a specific arrangement and storing it in a file format. This
component was required to be built with a high level of robustness to deal with
database outages, mentioned above. If repeated database connectivitydrecame
issue while the cache file builder was trying to retrieve its data, the fallback

operation was to copy the previous dayobs

19

database. {ail notification of success or fallback are required to be sent
following the campletion of it process every night. The cost cache file builder
component was not required to have Ul. It is initiated nightly on a Windows
Server from a task scheduler. It builds its files prior to midnight and puts them in
a f ol der wi tdate.tTheeParnGost DLL dhaaysbuses the folder for
that date for processing the costing requests, so at midnight the Part Cost DLL

switches to the new dayoés cache fil es.

5.2 Part Cost DLL

The existing MDP part pick functionality was the basis for the @ast DLL.
It had all the rule processing functionality needed, but it was written in Unix C
procedural style, designed to run on the database server against the enterprise,
designed to work on FCATs and FCODs as opposed to VPCs and Sls, and not
designed d@ calculate costs, but only pick parts (i.e. build a BOM). The
cornerstone to the success of this project was going to be whether this code could
be reengineered into a C#.NET object oriented version. The MDP part pick code
was very large so this was tnan easy task. The first order of business was to
analyze all the functions of the code and understand what each did. The main
requirements were: 1) converting the C code to C#.NET, which involved
modifying C string formatting to C# style, 2) convertihg procedural code to an
object oriented version, 3) removing and replacing the FCAT/FCOD functionality
with VPFC/VPC/SI functionality, 4) using the cache files as opposed to the
database calls to retrieve its data, and 5) adding functionality to loo&stp for
each part and tally the results. The Part Cost DLL was designed with no user
interface, but it does need an application interface so that it can be called from
other applications. In this system, the cost interface DLL is the component that
invokes the part cost DLL. The cost interface DLL passes selection configuration

data to the part cost DLL, which returns the cost and part list.

20

5.3 Cost Interface DLL

The purpose of the Cost Interface DLL is to handle all types of costing requests
It consised of the followingfour methods: 1) Part Costing, 2) Price Table
Costing, 3) Ordering Number Costing, and 4) Model Number Costing. The part
costing method, which uses the Part Cost DLL described in section 5.2, is the
preferred method forostingbuild-to-order products. Thimethod is designed to
cost products dynamically based on the part pick rules and the part costs. Another
method, price table costing, has been around for some time. The cost values are
entered into the same rubeiented price tabs as the list and net price values.
The difficulty with this method is in keeping the costs up to date and accurate.
This method is needed for products which are sold in the Trane sales system, but
are manufactured by another company, although theouethn easily be set up
for any product. Ordering number costing is for use in koHstock products
and accessory items. These items have ags®ned ordering number, which
can be directly referenced in the manufacturing system to find the ctisatof
item. Model number costing is the last method. The model number can be built
from the specified product configuration. That model number can then be directly
referenced in the manufacturing system to find the cost of that model.

The Cost Interface [L is passed a selection ID. The DLL retrieves the
configuration of the selection and cost template for the product from the database
and then processes that selection using one of the four methods. The resulting
cost and cost details for the selectiore @hen passed back to the calling
application. The Cost Interface DLL was designed with no user interface, but it
does need an application interface so that it can be called from other applications.
In this system it is called by the Unit Coster apgi@ma For testing it has been

set up to be called frothe automated test apparatus.

21

5.4 Unit Coster

The Unit Costeris an application that runs 24x7, checking for selections to
appear in its queue [32]. This application runs on a Windows server within the
Windows task scheduler. The application has a modest user interface to display
activity and allow for the applit®@n to be exited; however, because the
application will run on a server and be invoked through a special application
account, no one other than the developer will ever see the user interface. The
most important requirement of this application is robustnelt needs to log
errors and continue functioning no matter what happens. The application
monitors a queue for selections. The queue is actually just a database table set up
to hold records containing a selection ID, date/time created, number o$girace
tries and date/time of the last attempt. When one or more selections are present in
the queue, the application begins costing the first selection in the queue by
invoking the Cost Interface DLL. When the application begins costing a
selection,itm di fi es the queue recordbs |l ast atterl
has recently been tried. It also increments the attempt counter. If the costing
attempt succeeds, the application removes the record from the queue. It then adds
a record to a costg feedback table to indicate date/time of processing and total
process time. It also saves the cost and cost details information to a master and
child table. If the costing request fails, the application moves onto the next record
in the queue. Itignes all records with a process attempt date/time within the last
hour by employing a where clause which filters out all records which have failed
in the last hour. When a preset number of attempts have been tried the application

logs the failure in the lback table and then removes the record from the queue.

22

5.5 Cost Template Designer

The cost template designer is a key application in the system because it
provides the ability to maintain the cost attributes for each product [9]. These
attributes dictee how the Unit Coster will process a costing request for a
configuration of that product. The simple attributes include: unit costing method,
cost type (standard or current), and manufacturing system source database. There
is also a means to overrideetmain costing method for specific product
categories. For example, a product may use the part costing method, but several

accessory categories may use ordering number costing.

A second main requirement for the cost template designer is to provide a means
to initiate an automated cost load request for a product. Included in this is the
requirement to break down the request by t
request process consists of saving the request to a database table withathe e
addres of the person making that request, and storing a breakdown of the
productdés categories into a related tabl e.

automated cost loading background process and processed.

A third main requirement of this applicationtis provide a means of editing
rates for warranty and outbound freight cost for a product. The application also
provides a means to override the base prod
example, the rate for the main product may not apply to ceaadessories
included with that product. Those accessory items will have a different product
code and therefore the application must allow the main rate to be overridden.

23

5.6 JCHQ and UPS

The JCHQ (Job Center HQ) application has existed for many yeaissuded
by a team COJ@am It is also used by some other product supgartipsin the
manufacturing locations. The application provides a means to view all the
selections on a job and set discounting factors to provide discounts requested by
sales asociates. The requirements for the changes to this application involve
adding new columns into tharice rollup screen [10]. This screen allows the
users to view several different price types and rates. The new columns required
are: 1) Standard Manufdaring Cost 2) Warranty Cost 3) Freight Cost 4)
Entered Standard Margin 9&) Authorized Standard Margin %6) Entered
Freightand Warranty Adjusted Margin %) Authorized Freightand Warranty
Adjusted Margin %,8) Entered Contribution Margin %and 9) Authorized
Contribution Margin % The columns are needed to allow JCHQ users to see the
costs and margins and use those values in discounting decisions. JCHQ uses the
cost data that the Unit Coster has saved to the coordinated jobs database.
Formulas 6r the margins are based on feedback from personnel in finance, to

determine precisely what was needed.

Another requirement is the ability to launch the Cost Detail Review Tool from
JCHQOGs price rollup screen. T hkitat h a s
calls a URL to bring up the browser. Part of the URL includes the Job ID of the
job currently displayed on the price rollup screen. This enables the Cost Detail
Review Tool to go directly to a display of the selections on that job, allowing the

user to quickly get to the details of the cost for a selection.

UPS (Unitary Pricing System) is also an existing application, used to display
price and cost on configured selections. UPS is only used for coordinating jobs
consisting solely of unitary ligntommercial products. The requirementstfos
change only involvesuild-to-order products. Most of the products handled by

UPS are buildo-st ock product s. UPS6s cost fo
24

been

t hc

the configurable products it is not. The reqdichange involves bringing in cost
for those units as calculated by the Unit Coster. No other changes to the existing

system are required.

5.7 Cost Detail Review Tool (CDRT)

The need for the CDRT (Cost Detail Review Tool) came out of the need to
provide product support personnel and cost accountants a means to view more
than just the total cost. CDRT provides a means to drill down into the costs of a
selection to see everytdd of the cost. It is required to be a web tool, in order to

provide an easy way to access the data from within the IR network [8].

The application provides several means of searching for a selection, and thus a
sel ect i osufpertseaccid by coordinated job, by committed order, by
product code, and by product family. Based on the search filter, the search results
are displayed in a grid. The grid provides several columns of information, and
also a link to drill down into the costs forathselection. The selection details will
be displayed differently based on the costing method. For the part costing
method it will display all the parts and their costs, alongh a separate table of
list pricing per option. For ordering number cogtithe display is similar to the
part costing display except that instead of displaying parts, it will display the
ordering numbers and their costs. For the price table costing method, the display
of the cost is combined with the list prices, since thisrmation all comes from
the same source and is directly related.

25

5.8 Automated Cost Loading

The automated cost loading application is designed to run on a server, so it is
not intended to be seen by the users. According to the functional requirements
doaument [6], automated cost loading requests will be made through the cost
template designer and stored in two tables. The automated cost loading
application will routinely scan for new requests in those tables. When it finds
one, it will start the cost king process. This process involves linking the
ordering numbers from the price tables into the ordering number cost tables, as
described in the next paragraph. The costs are then loaded back into the price
tables so that the user will have the costwshagideby-side with the list prices
that they have set. This provides a means to verify accuracy of the list prices

based on reductions or increases in the costs of those items.

A stored procedure is needed to collect the standard cost values for all ordering
numbers used in the Trane products on a routine weekly basis. This stored
procedure will cycle through the current ordering numbers; adding costs for any
new ones and updat] costs for any modified ones. The difficulty with this is
matching the ordering number from the sales system to the manufacturing system.
Some differences involve whether the ordering number is with or without dashes,
with our without spaces, and soraeen have characters appended at the end of
their string. The big advantage of running this procedure prior to the ordering
number ever being selected in a configured unit that needs to be costed is that
mismatches can be caught right away. Notificabbmismatches will be sent to
a designated list of users, including the author. Those items can then be manually
corrected within the ordering number cost relationships maintenance screen
described in section 5.9. Once the relationship is establishedotting will
continue without intervention in the future. As an example, in the enterprise
dat abase, the or der-054020mMuwmbaehre riesa sc alnl et dh el ON

Cincom database the uni t S call ed M02330!

26

desigred with some ability to handle differences, like stripping out the dashes, but

sometimes the differences cannot be handled.

5.9 Miscellaneous Maintenance Screens

Two final requirements are the addition of a pair of maintenance screens to the
Data MaintenanceCenter (DMC) application, in order to provide a way to
maintain some productlated data associated with the cost system. The first
screen is for overall maintenance of the rate for the cosbagdiike warranty and
outbound freight cost. Section 5obitlined the ability to maintain the rates for
warranty and outbound freight within one product. This nhew maintenance screen
allows the user to edit data in the same database table, but also provides the ability
to view or edit the rates for several protiuat the same time. It is designed so
that the user can quickly select several products and do an update on all their rates

at the same time.

The second screen is for maintenance of the ordering number cost relationships
used in the stored procedure désed in section 5.8. There are only two
attributes involved in the relationship between the sales and manufacturing system
that need to be edited when the relationship cannot be determined. The source
manufacturing system database is the first atibuEhis can be any one of the
ten Cincom databases, or the UPDS database. The other attribute is the ordering
number used in the manufacturing system database to identify the item. The
number will resemble the one used in the enterprise database, yousenather
or no separators between characters. Once those two attributes are modified, the
next time the stored procedure, described in section 5.8, is run again, it will be
able to starting getting costs for that item from the source database.

27

6. Designand Programming

From the functional requirements a design was established for each of the
components. The desigmas on anobjectorientedapproach. UML diagrams
such as use caskagrams anclass diagramsvere used. In addition to UML
diagrams, ER digrams were created for the data base deskyom therethe
programming of the applications began using several programming languages and
tools. In this section the author will discuss the design and programming

techniques usefdr this project

6.1 UserlInterface Screen Designs

When working on any of the components that required a user interface (Ul), the
design workusually stars with the Ul. This project also followed the same
technique. This included how the application was going to flow from orreen
to another, what information be shown, and what actions would be occurring on
each screen. The Ul often dictated how the functional requirements would be
developed, and so this process often occurred in conjunction with development of
the functionalrequirements. Taking these designs and developing the working
prototype of the Ul was the next step. This allowed users to see the flow and look
of the application without investing a large amount of time. Revision could easily
be made at that point dnnew prototypescould be reviewed, all prior to

completing the functional requirements.

6.2 Architectural Design

Based omgroupings offunctional requirementglasses were created for each

28

group Based on thelasses all functional requirements were aligned with a

correspondinglassand turned into methods and attributes. Figure 7 shows part

of the class diagram for the Part Cost DLL.

In the upper right you can see the

main class, CostCalculator, and the mainrfate functions to the Part Cost DLL,

uch

(7]

as

1

3t

V[nsl[akdu.nr
Class

=/ Fields
selection : Selection
= Properties
5 CPRTDataTable : DataTable
"5 FilePath : string
;:" LoadDCRulesData : bool
7 LoadNewData : bool
"5 Selection : Selection
= Methods
% CostCaloulaton()
¥ CreateAndVabdateSelection() : void
2% CreatePartsListTable() : DataTable
4" ValidateSelection() : decimal

t hose

to

ACreateAndVal i
Val i dat e 8solameat Theoasspdatons to the other classes, tlilee
Val i datarealsosshown iafiguse 7

dat eSel

1

L

| selectedPerf 2
Class

= Fields
mfg_coil_bank_grp : string
¥ mfg_prod_grp_equiv_overtide : string
mfg_tagaing_ind : string
@ mfg_vcat_equivalert : string
perf_category 1 string
selectedModuleld : decimal
¥ tag:string
¢ walue : string
¥ vpfcld : decimal
= Methods
¥ RetrieveVCATs() : executionResult
© SelectedPerf() (+ 1 overload)

Selecteditem E3
Class

= Fields

1

Class

3 Fields
4% manufacturingBillLetter : string
&% manufacturingOrderfame : string
4¥ selectedModules : List<SelectedModule >
= Properties
75 ManufacturingBillLetter : string
57 Manuf acturingOrderName : string
7' MfgProdGrpWithCost : Dictionary <string,
' PartsistDataTable : DataTable
S Price : decimal
5 ProdFamiylD : int
' selectedModules : List <SelectedModule>
' SelectionlD : int
S TimeTaken : decimal
= Methods
@ Selection()

SelectedModule
Class

.
= Fields

4% ControlModuleSeq : string(]
#* maxControlPosSeqhbr : short
¢ maxModuePosSeqNbr : short
& pcbHeaderlD : int

¥ prodFamilyld : string

prodModuleld : decimal

4% runDCRulesind : string

selectedModuleld : decimal
seauencehibr : decimal

Figure7 - Partial class diagram
(complete diagramappendix

6.3 Database Design

1

1

¥alidation
Class

= Fields

4 _genPCBHeaderlist : List<PCBHeader>

4% rejectedHeaderFlag : bool
= Properties

_‘j GenPCBHeaderList : List <PCBHeader >

= Methods
+¥ ConvertStringToDecimal() : void
@ DeletePCBDetall() : void
¥ Generateld() : int
W InsertGeneratedHeader() | void
W InsertPCBDet() ¢ void
¥ ProcessDES() : bool
% ProcessFCAT() : bool
@ ProcessFCD() : bocl
% ProcessOneYR() : bool
% ProcessPCD() : bool
W ProcessPiX() : bool
“ ProcessREX() : bool
% ProcessSPC() : bool
¥ ProcessValResults() : void

 ReSequenceCrder() : executionResult

@ SaveGenHeaders() : void

“ SetErrorIndicator() : bool

W UpdateRelatedInfal) : void

W validateFeat() | executionfesult

@ validatemMfgCato() : executionResult

@ validateOrder() : void

3 E
Part 2
Class
= Fields

¥ bomGauge ! string
@ bomlength : decimal
¥ bomQty : decimal

h
b L

h

The existing database design used in the sales system dictated much of the

design for this costing project. Several new and modified database schema were

required to inplement all of the functionalitiesequired.

29

New tables, views,

ect

triggers, roles, DB links, functions, and procedures were added to the ESTRNP
and SOTRNP databases. Some of the tables were added with foreign keys to the
sales system tables maintain referential integrity. The following is a list of just

the tables that were added along with their purpose:

1. The PROD_FAMILY_COST_SETTING table was added to hold the main

attributes for each product family that are needed in the costing operatio

2. The UNIT_COST_PROCEDURE table was added to hold overridden
methods within a category of a product family.

3. The BU_COMP_COST table was added to hold the cost values (freight,
warranty, direct materialand direct labor, variable overhead, fixed

overheadjor each ordering number.

4. The COST_ADD_RATE table was added to hold the freight and warranty
rates at the product family or product code level. These rates are used to

determine the cost by multiplying the rate againsntheufacturingost.

5. The PRICE_RBLE_COSTING_REQUESTS table was added to hold
requests for automated cost loading for product families.

6. The PRICE_TABLE_REQUESTS tableontains child records of the
recordin PRICE_TABLE_COSTING_REQUEST®ble and iglesigned to

hold the categories chosena costing request.

7. The COST_CALCULATION_FEEDBACK table was added to hold
additional information collected during the unit costing operation. Errors,

warnings, and process time is some of the information stored in this table.

8. The SELECTION_QUEUE_FOR_COBNG table was added to hold
requests for the unit costing of selections amel date/time added. The

Unit Coster processes the selections in this queue table based on order.

9. The SEL_PC_COST table was added to hold the total cost values for a

selection.

30

cost

onos

t h édtis & chitd@flSELs RCl| GOST. i

of

parts

t

10.The SEL PC COST DETAIL table was added to hold the cost values for

= SELECTED_ITEW_ID

= VPC_ID
OPTIONAL_ADD_SELECTED_ITEM

1 SELECTEC_MOBULE_ID

= S

= SELECTED_PRICING_PARM_ID

Sisslected tem

i

Tumbers)

W En

J0B_SEL_CoST W,

OB _SEL_PC_COST W

Cost System.

oot s |
282012 1740

[o= cosT_oeTai_
Jo= sececmion_cost_io
COST_PER_EACH

oty
COMPONENT_TYPE

Salected_mod salactad,

tem

ieE_pdprselected_terf
~

wgpselected_item
N
N

~

T
ny

6o
I

~

fe=vre o
fo= rOD_viooULE 1D

lé= seLecTion 1o
Numbe®0) M ()
Number®) NN (1)
Number17.10) NN

Number®))

ION_coST_Ip

Numbes0)
Numbes®.)

Number17.10) W

PR
LR

a

-

i

N

[SEECTED WOOULE D Numbe T G
o= sececTion o Homber@s)
_ o eroo_uoviie o umben) W o
— eRT_pATE
P ¥
s
s
L, sectionsancted mos
SEECTIon
= SEECTon D TombaG 0 1 F)
ACTIVE I JoB _YEsNo_FLac Numbertt) N
tumber©) NN (70
vahazt)
)
Numbers) N
o
\
4 \
-
P \
sstectoncted \
. : N
. P
-\
| ~
-
| -
-
\
- |
|
|
05
TombaG) ()
Varhaze0)
Nombata) N
one w
Vachae)
Vachazg)
Vachaa() N
one w
Humber10) ht
Nombea) N

prod_pic_grpsicted_pii_pr

~

SELECTED_WMOBULE

Bu

\

1 prod_module seleced_mod
v
\
v
\

RG> MODULE

\ rProsweoue D
b= Prop iy
" Frov_oouiE
SeechPTIoN

WARRANTY_YES_NO_FLAG.

Number10) N

prod_tamilyselection

A\

\

A

/7

prod_piic_arp prod_tfamily

WP

Figure8 - Partial ER Diagram of sales syst&B

31

Figure 8 shows a portion of the salgstem ER diagram with the new tables

highlighted in fuchsia.

The reason behind storing the part rules and costs in cache files is due to the
fact that the manufacturing system databases have many outages. Running off the
cache files provides a way to woaround the database outages and also provides

a performance improvement.

6.4 Programming Languages

Several programming languages were used for this costing system. C#NET
was used for the Unit Coster, Cost Interface DLL, Part Cost DLL, Cost Template
Desigier and the Cost Cache File Builder. The main reason for using C#.NET for
these components was taeu t hfamiliérisy with that language/compiler. That
| anguage is the primary one used in the alt
applications. Anothrereason was the ability to build the components in a modular

fashions for reusability.

Update display
[View] - [ControllerJ kfﬁriﬂput
J L

Notifications

State data [Model J

Figure9 - Model View Control Framework
(Based on [1h page345 figure 13.)

Application calls

For the Cost Detail Review TQOASP.NET was used. The digation was
built with the MVC (model view control) framework, as shown in Figure 8, and

JQuery. The model view controller framework separates the model, view, and

32

Controller into 3 separate modules [15]. The model is responsible for managing
the data.The view is responsible for the display of the data provided. Lastly, the
controller is responsible for converting user input into calls to invoke the model
and view. The reason for using ASP.NET with JQuery is that this language is
what others in the rgup were experimenting with for other new application
development. This approach provides a tiered, light weight infrastructure for
deploying the functionality over the web. The need for an easily accessible, zero
footprint framework for the delivery dhe information was needed to reach all of

the people using the system, without requiring setup or training support.

For part of the automated cost loading, stored procedures were developed to
automate the loading of the cost data into the Enterprisbatsa Stored
procedures were written in PLSQL. One stored procedure was developed to
update the list of ordering numbers. The other stored procedure was developed to

compare and update the costs of the ordering numbers when different.

6.5 Data Setup & Analysis

Analysis of the setup of the products, their pricing, and their cost data was a
large part of this project. Figuring out how to cost the product required an
understanding of the connections between the data from the product and pricing
setup all theway through to the cost calculation. No one person was able to
supply all the information necessary to build a complete set of requirements for
the project. Instead, that information had to be pulled together from pieces held
by several different groupsThe databases used also served as a good source to
determine how things worked. The pricing data setup for the products served as
one of the best sources of knowl edge.
ordering numbers in the pricing ruleBor some products every single price rule

had an ordering number. These products were set up with the ordering price

33

method. For the products which had MDP part pick rules setup, the part costing
method was usedFurthermorefor some parts of the pring, ordering numbers

were used. In the discovery phase, this analysis pointed out a need to have a
mixture of costing methods. For products manufactured by external vendors,
fortunately, those costs were maintained well within the pricing rules. These
products required the standard price table costing method. Idateng the
development of the klt Coster application, the need for the model number
costing method arose. This became apparent after talking with others and

reviewing how the data was sgi for those products.

In testing the cost calculated by tbait Coster for a few products costed with
the part costing method, it became apparent that costs did not match the unit costs
in Cincom. Upon further discoverit was found that these products had other
costs added on at the time of manufacturing. For these proilweds decided to
continue using the standard price table costing method for now and in a future

phase of this project determine a way to costeh@oducts dynamically.

34

7. Validation and Testing

Validation of the requirements with the business partners was completed to
ensure that the system was developed in a
The validation of the overall system requirementsuo@d before the high level
system architecture was designed. There was also a validation step after the

compl etion of each of the componentds requ

Several testing methods were used in this project. The methods were based on
the situations and also varied according the development process followed. Code
reviews, graypbox testing, blaclbox testing, usability testing, regression &
automated testing all played a role in the successful testing of the components of

this costing system

7.1 Code Reviews

Because most of the programming was completed by someone other than the
author, code reviews were a key component of the testing effort. All the code
developed by others went through a code review by the author. Several things
can be gaied from good code reviews: 1) making sure the code followed the
design, 2) making sure the code was understandable or commented so that it could
be easily maintained in the future, 3) <che
coding standards and guideds, 4) checking for correct use of objedented
methods and variables, including correct visibilypd 5) gaining knowledge of
the code to be used in gragx testing, including bodary conditions.
Additionally, once code is developeduplicate cde, used in different areas, may
become apparent. Revising duplicate code into common methods is often
required.

Code reviews were especially important in this project becafttss

inexperiencedinterns or offshore consultants were used, and their godin

35

practices were not as good as those of an experienced programmer. Following an
initial code review, corrections were made by the programmer and the code was
then rereviewed. In some cases it took several iteration of this process to get

things correct

7.2 Gray-box testing

Gray-box testing was used extensively by the author. ®Boxytesting is a
combination of whitebox testing and blackox testing [16]. As with blackox
testing, the requirements for the components were tested. Based on the code
reviews, the author had a better idea of code that processed the functions, so some
testing was completed with that knowledge in mind. In this-gmytesting, all
functional requirements were tested for accuracy. Test cases were created for
eachfunctional requiremenand were executed. Any problems found were sent
back to the programmer for correction. Shown in Table 4 is one test case in
which 12 scenarios, shown in Table 5 were run. These were different scenarios
meant to test the functionality ahe Unit Coster. The scenarios include the

common situations, and the error handling capability of error situations.

Test Case ID Test Case Description Prerequisite Step# Test Step Expected Result

1 Start the Unit Coster running against the |no errars
test database

2 |Insert the selection into the cost no errors
calculation queue with SQL - insert into
1. Use the Cost Template selection_queue_for_costing
Designer to make sure the [selection_id) values (<<selection_id>>);
verify the cost calculation |product family of the selection 3 Verify that the record is in the queue - |Record exists
for a selection from a choosen for testing has been select * from
UCTCo01 product family that setup scenario specified. selection_queue_for_costing order by
matches the specified 2.The queue table should be 4 |After waiting a minute, recheck the Record should be gone
scenario. empty to start. 5 |verify the records in the sel_pc_cost Costs should match expected
3. Determine the expected cost table - select prod_code, results
of the selection being used. sel pec_cost.cost per each,

sel_pc_cost detail.* from sel_pc_cost,
sel_pc_cost_detail where
sel_pc_cost.selection_cost_id =
sel_pc_cost_detail.selection_cost_id and
selection_id = <<selection_id=>

Table4 - Test Cas®f Various Costing Method Scenarios

36

Scenario 1 Part Set Costing (no owerrides)

Scenario 2 Part Set Costing (with ordering number overrides)
Scenario 3 Part Set Costing (with list to cost override)

Scenario 4 Part Set Costing (with net to cost override)

Scenario 5 Ordering Number Costing (no overrides)

Scenario 6 Ordering Number (with list to cost override)

Scenario 7 Ordering Number (with net to cost override)

Scenario 8 Price Table Costing (no overrides)

Scenario 9 Price Table Costing (with ordering number overrides)
Scenario 10 Model Number Costing (with ordering number overrides)
Scenario 11 Ordering Number Costing with missing ordering number cost
Scenario 12 Part Set Costing with missing product family cache file

Table5 - Test Case Scenariéelating to Test Case in Table 4

7.3 Usability Testing

For the components of the system that required a user interface, a usability test
was performed with the actual users to get feedback as to howheasystem
was to useand howintuitive it wasto understand Usability isa measure of
appropriataess functionaity, and effectivaessof the interaction with the user is
[16]. Usability testing was performed on these components: 1) the cost template
designer, 2) JCHQ & UPS, 3)dhCost detail review tool, and 4) the cost rate
maintenance and ordering number cost relationships maintenance screens. This is
an important step because whether it is in a prototype development, or final
release of an applicationsers should not compteaboutusability. Several good
things were learned in the usability testing of these components. Those

suggestions were incorporated in the final

7.4 Regression Testingand Automation

The JCHQ application had an autoetatregression test developed well before

this project started. The regression test was setup to ensure that enhancements to

37

the application do not have a negative effect in some unforeseen part of the
application. The regression test is maintaibgdCognizanttesting consultants
Theregressiortest is mostly automated so that it can be easityimewith every

new release of the software. The JCHQ application is version of the Job Center
application which is used by hundreds of sales associates @agrgo it is very
important to reduce the likelihood of bugs in the application. In addition to
running the regression test, Cognizant also performed -blaxkiesting of the
JCHQ application based on the requirements. They built their own test cdses an

then had them reviewed by the author.

An automated test apparatus was also built to test the part cost DLL. This was
required to allow for the maximum amount of test data to be run without user
intervention. The test apparatus was built to run realufaaturing orders
through the part cost DLL, obtaining the calculated cost and also pulling in the
cost calculated by the existing MDP background process. This helped ensure that
the new DLL, which was rengineered from the MDP background process, was
performing exactly like the source system.

In a similar manner, a serautomated tool was created to compare the cost of
committed orders, for all costing methods, to the manufacturing cost once the
units were manufactured. The manual part of this testtovamalyze each one
that did not fully match. A good reason, such as a design special, was found for
each case in order to prove that the Unit Coster was correctly costing units for all

costing methods.

7.5 Component Testing and System Testing

As each comprent was developed, it was tested with the dpay testing. For
the DLLs, prior to the completion of the entire system, testing apparatuses were
created to simulate the calling of the functions. For instance, before the Unit

Coster application was dewgled, a test apparatus was created to simulate the

38

calling of the cost interface DLL in order to test that component. Prior to
developing the Cost Template Designer, the database tables were set up and could

be updated manually to allow the Unit Costerumo.

Once all the components in the system were developed, the overall unit cost
accuracywas checked. Running the Unit Coster, with all the components in
place, was done to collect test data, which were then compared to known results.
Additionally, viathe Cost Detail Review tool, users were asked to help check the
results of the system. They could use the Cost Detail Review tool to verify the
costs of real jobs and orders running through the sales system, well before the cost

data was actually used amy discounting decisions.

39

8. Project Challenges

The challenges on this project were numerous. Fortunately there were no
showstopper challenges, but there were quite a few obstacles that took additional
time and attention to overcome. One of the chghksrfaced was the turnover of
consultants. As mentioned earlier in the paper, Cognizant is the main consulting
company that provides IR with development consultants. During thelorear
project, the author dealt with the loss of two very good consaltaifite first,
who was extremely knowledgeable about the system, left the project early due to
an expired Visa. The second consult left at the end of 2011 due to a pending
marriage in India. Turnover of consultants takes a great deal of effort to get the

back up to the level of knowledge need to work efficiently.

Another challenge was the lack of strong business leadership. Good projects
require a strong investment of time and interest from the business. It also takes
someone at a high enough leveget participation from all parties. Early in the
project, there was a good business leader, Rick Aldridge, who helped get the
project kicked off. Rick Il eft the company
that a business leader came forwd@dn Wend, VP of Saleswho was at a level
with enough authority to driverganization alignmentDan also has a wealth of
Trane sales experienaehich aided in his leadership effectiveness in this area
During the inbetween periodthere was great deal of conflicting voices with no

single group who could enforce the project

Changing requirements were not a big problem, but as with most projects,
changes are a fact of life. Completing committed order costing was not part of the
original plan, but was added in February 2012. Fortunately this effort was
accomplished without too much additional work, as it was something that was
already planned to be completed eventually. Another change was the inclusion of
the warranty and frelg cost calculation and the maintenance screens for the

warranty and freight rate maintenance.

40

The varying manufacturing systems within Trane were alssulastantial
challenge. Each location and each product had differences which had to be
accounted for. It took time to understand all the differences and to find the
expertise at each location to help explain the systems. Examples of this were the
three manufacturing systems, several sets of cost data (current, standard, and
planned), and four costing nheids. Even within the manufacturing locations that
ran the same version of Cincom, the systems were set up to work differently. For
example within the same Cincom database table, the Rushville locations stores a
single item cost whereas other locatioorstthe cost of the entire quantity.
Understanding and overcoming differences like this required several additional

hours of work.

A positive challenge was learning a new programming language, ASP.NET,
and some modern web development techniques. Itadokof learning [14] and
also collaboration with other groups at IR who were also experimenting with
ASP.NET, but overall the experience was a good one. The skills and techniques
developed can be used on other future projects.

41

9. Continuing Work

Maintaining and adapting the psales costing system will continue into the
future. Now that Trane has this ability,
further into the operations of the company. The cost data and margins will likely
be incorporated intenore reports. There is also a potential to use the data to

transform the way the company manages the discounting decisions.

One of the most glaring needs that have not been addressed yet is the need for
dynamic costing of the Lexington performance cliemathanger product.
Lexington has sever al customized component
a challenge to overcome, but the benefit is saving of about 600houas of
manual work every time it needs to becrsted, according to the airside guot
mar keting | eader. -sdélad sogtadrel updateédhewery poupted uct 0 s

of years.)

The same need applies to the La Crosse Centrifugal chiller products. This need
is not as great because La Crosse has a process for updating tisaleptests
t hat i s simpler than Lexingtonds process,
manual work to maintain. The costs for the La Crosse products that are outside of
the MDP part pick process should be easier to account for than the Lexington
productbecause La Crosse does not have the custom systems that Lexington does.

This will still be a project that will take a good deal of dedicated effort.

The Fort Smith custom products are also not costed by this system. These
products are totally customizabl but they are much lowepblume than the
Lexington or La Crosse products, so this is a-fowrity need right now. The
only downside of not having a cost for all products at the time of discounting is
for jobs with several products; they will have aamplete total cost if just one
of the products is not costed. The product manager for these products had a good

suggestion recently. He suggested allowing a way for the product support team to

42

enter in a cost manually. Because this is manual procissstill not ideal, but it

would provide a way to get a total cost on jobs with these custom products.

Anot her coming need is to integ+fate
wide back office system. The company is investing heavily in this efforttze
Cincom and UPDS systems are planned to be replaced with an Oracle EBiz

system in each of the manufacturing plants. Although the future system is not yet

designed, this costing system has the potential to easily integrate with that system.

Now thatthe costing is underway, the costs have begun to be pulled into the
PROS system and used for pricing analytics. Bringing the costs into the Oracle

Bl system for other reporting needs will be another area of future work.

43

Wi

t h

10. Conclusion

The costing systemglesigned to work within the Trane sales system, has
automated some of the manual processethe company The system can
calculate theostof nearly all products in a near real time speed. Components of
the system were developed with solid softwargimgering principles, which
should make future maintenance much easier. The process also provided the
business with a system which matched their expectations. Combining several
software engineering models to fit the needs of the components also prdaeed to

a real success.

This system was a really good learning experience for how to successfully
create software using several different software engineering models. There were
some real challenges and not everything went exactly according to the plan, but
overall it was a real success. The system should serve as the cornerstone for
future enhancements and transformational changes to the sales organization and to

the discounting process.

44

11. Bibliography

[1] G. Booch, J. Rumbaugh and I. JacobdSdre Unified Mdeling Language
User Guide Addison Wesley Longman, Inc. 1999.

[2] E. BraudeSoftware DesignJohn Wiley & Sons, 2004.
[3] M.J. Christensenand R.H. Thayérhe Pr oj ect Manager 6s Gui
Software Engi ne e iThe imgftte of Blecisidal aiir act i c e s

Electronics Engineers, Inc., 2001.

[4] Institute of Electrical and Electronics Engineers, Inc., New York, NY, USA.
IEEE Recommended Practice for Software Requirements Specifications
1998. IEEE Standard 831998.

[5] J. KeyesSoftware Engineering HandbooBRC Pess LLC, 2003.

[6] C.LenzAuto Cost Loader Software Requirements Specificatjon
3/3/2012.

[7] C. Lenz,Cost System Architectural Pla§/8/2011.

[8] C. Lenz,Cost Detail Review Tool Software Requirements Specification
1/10/2011.

[9] C. Lenz,Costing Templat®esigner Software Requirements
Specification 3/3/2012.

[10] C. Lenz,JCHQ Cost IntegrationSoftware Requirements Specificatjon
2/20/2012.

[11] C. Lenz,Requirements and Design for Cost Cache File Builgi&r2011.

[12] C. Lenz,Unit Coster Application Softwae Requirements Specification
10/6/2011.

[13] C. Lenz,Requirements for Part Cost DL.B/24/2011.
[14] Microsoft Corporation.fintro to ASP.NETMVC3(C#) I nternet:

http://www.asp.net/mvc/tutorials/gettirgjartedwith-aspnet
mvc3/cs/intreto-aspnetmvc-3, April, 2012.

45

http://www.asp.net/mvc/tutorials/getting-started-with-aspnet-mvc3/cs/intro-to-aspnet-mvc-3
http://www.asp.net/mvc/tutorials/getting-started-with-aspnet-mvc3/cs/intro-to-aspnet-mvc-3

[15] H. Mili, et al, ReuseBased Software Engineeringphn Wiley & Sons,
2002.

[16] R. PattonSoftware TestingSams Publishing, 2006.

[17] S.L.PfleegerSoftware Engineering Theory and Practi®senticeHall,
Inc., 1998.

46

Appendix A: Cost Detail Review Tool Screens

bund-te-costload DR

Fie Edit View Favortes Tooks Help

| Home - Project Web App @ Integration Schedule Page € | Cimate Solutions Home 2 Am, Std, Internet site] Field Systems Home Page 8 Google 2 Trane internet site

-8 =

¢ Favartes | 5l

(& Cost Detail Review Tool

2] Upgrade Your Browser ~

f= - Page- Safety - Tools -

By Specific Order/Job By Product Family By Product Code

SEARCH FOR SPECIFIC JOBS OR ORDERS.

@ By Committed & Transmitted Order
OBy Committed & Transmitted Job
OBy Coordinated Job

Order Number :
(ex. W2A284)

Refresh Order List

89Y957

Orders :

Refrieve Selections) gelection(s) Found

Retrieved Selections Filter List: x

Total
o| Comm | Mfg | Freight, Warranty,
+ # Cost?| $ + s

Tota
Mult

order , Bill _ Selection| Pr

" . od , unadj
Numbes Letter| Name | Codes’ @0

List $

Nat,

L Std Faw
% 4 % Selling $+ * Margiré Adj
% Margin

89Y957 | A RTWD 1.000 99.7 99.7 || 424,416 || 4,234 0 3}

Series

0703 11,201,066 0 1,291,066

(T™m) 71

250 Ton
Wats
Coole

89Y957 | A RTWD 99.7 99.7 || 424,416 | 4,234 0 0

Series
(T™) 71

Ton

0703

1

1,291,066 01 1,291,066 || 1.000

K@ 1/1 Pages) Selections Per Page

<

Cost Detail Review Todl Input by Specific Order or Job

47

Fixed var
Overhead®| Overheadt
$ $

s

Cost Detail Review Tool - Windows Internet Explorer

< ‘gﬁ i/ fbwd-tr-costload s D

o|[E3ES)

Google

GO

Fle Edt View Favorites Tools Help

‘ (& Cost Detall Review Todl ‘ |

i Favartes | i (7] Homs - Project Web fipp () Integration Scheduls Pags | Climate Solutions Home] Am. Std, Internet site.] Fald Systems Homs Pags

Google @] Trane internet site & | Upgrade Your Browser ~

M v B 0 dm - Page - Safety~ Took - @-

@lngersolmand Cost Detail Review Tool

Inspiring Progress™

{ By Specific Order/Job J By Product Family { By Product Code
SEARCH FOR SELECTIONS FROM SPECIFIC PRODUCT FAMILIES.
® Coordinated Jobs
O Committed Orders
Product Family: VPC/ST'S:
4. Unitary (UN) & i Elsue =
£ Rooftop Air Conditioners (RT) = - Elcoowunit
+ Split System Air Conditioners (SS: i~ Ele_unrt
! 13 Ton Ductless Evaporators (MSP) - C1AHUNIT
1- 6 Ton Unitary Split Systems (SSC) i =
- 20 to 55 Ton Large Split System Air Handlers - Penang (TTV) - Clad uniry
Trane Variable Refrigerant Flow System - TWR IT (TVR] i Eladunms
- Trane Varisble Water Flow System Mini Split Indoor Units (VWE) - E]EURNUNTT
American Standard Qutdoor Cooling Units (AMSS i~ [lcomunrr E
Mini-Split Condensing Units - Brazil (BMSC) i~ [Elcom_unt
Fan Coil Unit Casstte - Taicana TVWFSYS (CAST)) - [loutaccy g
Period: Last X Units =
Last X Units: 3
From:
To:
Retrieve Selections | 3 gelection(s) Found
Retrieved Selections Filter List: x
F&W | Faw _—
- . Ent Auth | Ent Auth | Ent ||Auth .
Job Name = election, Brod o grye A%k 46 Entg fUhe Bt Buthe Margi giré Adj ¢ Adj $| Comms| Comm (49 s (TIONG|Warrar 1
E=C % % Margin | Margin | § § $
% %
Quest 5 Ton| 0425, 1|| 8421 o0|2,5898,334| 307 .990| 349 79.8 304| 784 121 390 | 1,686 45
Diagnostic Unitary 0427,
Miramar Split 0886
Systems
Smoliks 5 Ton| 0420, 1|| 6,694 0]2,277| 6,694 .340|[1.000(36.0| 78.2| 31.0| 765 106 313 | 1,457 40
smokehouse || Split 0425,
0427
Smoliks 5 Ton| 0161, 1|| 7,046 o0]2,396| 7,046 .340|[1.000| 376 788 32.7| 77.1 112 329 1,495 42
Smokehouse | Split 0420,
0425,
0427 B
H 49 1/1 Pages B MT10 ¥ Selections Per Page
s I] &
Done &3 Lacal intranet - ®iow v

Cost Detail Review Todl Input by Product Family

48

Cost DetailReview Tooli Input by Product Code

49

